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CAUTION: these notes were typed up during the lectures, and so are probably
full of typos along with misheard or misread parts (and perhaps genuine misun
derstandings).

Section 1. Polish Spaces, standard Borel spaces,
and Borel equivalence relations

1 • 1. Definition
A topological space hX; T i is Polish iff it admits a complete separable metric d .

Notation: If hX; T i is a topological space, then B.T / is the � algebra of Borel subsets of X . Normally when you talk
about Borel equivalence relations, you don’t care about the topology, but whether something is Borel.

1 • 2. Definition
Let B be a � algebra on a set X . Then hX;Bi is a standard Borel space iff there is a Polish topology T on X such
that B D B.T /.

To what extent is the topology determined by the Borel subsets? The answer is not at all, by the following theorem,
which has a proof to be found in Kechris’ book.

1 • 3. Theorem
Let hX; T i be a Polish space and let Y 2 B.T /. Then there exists a Polish topology TY � T on X such that
B.TY / D B.T / and Y is clopen in hX; TY i.

And this has a nice corollary.

1 • 4. Corollary

If hX;Bi is a standard Borel space, and Y 2 B, then hY;B�Y i is a standard Borel space.

Here, B�Y just means ¹Z 2 B W Z � Y º. This follows just because we may make Y into a clopen set, and Y � X
being closed implies that the corresponding metric is still complete.

Theorem 1 • 3 suggests that two standard Borel spaces should look alike. In fact, there is a unique uncountable one.

1 • 5. Theorem
There is a unique uncountable, standard Borel space up to isomorphism.

1 • 6. Definition
If X is a standard Borel space, then an equivalence relation E on X is Borel iff E is a Borel subset of X �X .

So what we care about is comparing the relative complexity of Borel equivalence relations. Three examples we can
define straight away are the following.

1. If X is a standard Borel space, then the identity relation id �X D idX is Borel.
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2. E0 is the Borel equivalence relation of 2N defined by
x E0 y $ x.n/ D y.n/ for all by finitely many n 2 N.

3. The Turing equivalence relation�T on P .N/ D 2N is defined by A �T B iff A 6T B and B 6T A. And�T is
a Borel equivalence relation.

1 • 7. Definition
A Borel equivalence relation E is countable iff every Eclass is countable.

We want to compare the complexity of Borel equivalence relations by way of reduction. Now we don’t allow arbitrary
maps in the sense of reduction, but instead focus on Borel maps.

1 • 8. Definition
If X , Y are standard Borel spaces, a map f W X ! Y is Borel iff graph.f / is a Borel subset of X � Y .

There is an equivalent definition of Borel maps by the following theorem.

1 • 9. Theorem
If X , Y are standard Borel spaces, and f W X ! Y , then the following are equivalent:

1. f is Borel.
2. f �1"Z is Borel in X for each Borel subset Z � Y .

1 • 10. Definition
Suppose E, F are Borel equivalence relations on the standard Borel spaces X , Y .

1. E is Borel reducible to F , written E 6B F , iff there is a Borel map f W X ! Y such that
x E x0

$ f .x/ F f .x0/.
2. E and F are Borel bireducible, written E �B F iff E 6B F and F 6B E.
3. E <B F iff both E 6B F and F 66B E.

Let E, F be Borel equivalence relations on standard Borel spaces X , Y . f W X ! Y is a Borel homomorphism
from E to F iff x E x0 ! f .x/ F f .x0/.

For example, ifX and Y are uncountable, standard Borel spaces, then idX �B idY . As another example, we can define
a Borel reduction f W 2N ! 2N from id2N to E0 by x 7!f x�1_x�2_x�3_ � � �_ x�n_ � � �, because any difference
between x and y occurs infinitely often in f .x/ and f .y/. As a challenge, find an explicit Borel reduction from E0 to
�T.

The following is a theme of the course: Supposing that E and F are Borel equivalence relations, what techniques are
available to prove that E 66B F ? Often a proof that E 66B F shows that if f is a Borel homomorphism from E to
F , then there exists a “large set” which is mapped to a single F class. So the idea is that if the reason is E is too
complicated, then you’d expect the “kernel” to be large, which is similar to this statement. So what we need is suitable
notions of largeness, and in this course, we will use three.

• Category

1 • 11. Definition
If X is a topological space, then Z � X is comeager iff there exist dense, open subsets ¹Dn W n 2 !º such
that

T
n2! Dn � Z.

So if ¹Zn W n 2 !º are comeager sets, then
T
n2! Zn is comeager. And this is supposed to motivate that this is

a notion of largeness.

Now if we want to separate id2N and E0, i.e. that id2N <B E0. But it turns out that (provably) the notion of
category can’t be used any further. After category, we have measure.

• Measure
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In particular, we look at probability measures.

1 • 12. Definition
Suppose hX;Bi is a standard Borel space. Then a Borel probability measure on X is a function � W B !

Œ0; 1� such that
– �.;/ D 0, �.X/ D 1;
– If An 2 B are disjoint, then �.

S
nAn/ D

P
n �.An/

Remark: if ¹Zn W n 2 !º satisfy �.Zn/ D 1, then �.
T
n2! Zn/ D 1. Note that this depends on the choice of

measure.

• Martin’s measure
1 • 13. Definition

For each A 2 P .N/ D 2N , the corresponding cone is
DA D ¹B 2 P .N/ W A 6T Bº.

As you might expect by now, if ¹Dn W n 2 !º are cones, then there exists a cone D �
T
n2! Dn. To see this,

choose An 2 P .N/ such that Dn D DAn
. Then there exists an A 2 P .N/ such that An 6T A for all n 2 !.

ClearlyDA �
T
n2! DAn

D
T
n2! Dn.

We get the following picture illustrating the limitations of these various notions of largeness. In particular, category is
only useful in distinguishing E0 from id2N . Measure and ergodic theory isn’t able to deal with turing equivalence. It’s
also not yet known whether E1 �B �T.

id2N

E0

�T

E1

category

˚

	

measure
ergodic theory
etc.

Martin's measure
determinacy arguments

other notions of largeness

˚

1 • 14. Figure: Countable Borel Equivalence Relations
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Section 2. Countable Borel Equivalence Relations:
The Feldman–Moore Theorems

So far we’ve learned the language, and it’s time we did more. As a matter of notation, write G Õ X to indicate a
group action.

2 • 1. Definition

If G Õ X , then EXG is the corresponding orbit equivalence relation:
x EXG y $ 9g 2 G.g � x D y/.

Suppose � is a countable group and X is a standard Borel space. An action � Õ X is Borel iff for every  2 � ,
the map x


7�!  � x is Borel. In this case, we say X is a standard Borel �space.

For example, if E has all of its classes as countable, then we can write E D EXZ for a suitable group action from Z.
Of course, to do this naïvely, we will use choice. But Feldman–Moore tells us that E D EX� for some � and Borel
group action. It turns out in the absence of choice that not every countable Borel equivalence relation can be realized
by a group action from Z.

The theorem itself is the source of a great many of connections between other branches of math.

2 • 2. Theorem (Feldman–Moore Theorem)

If E is a countable Borel equivalence relation on a standard Borel space X , then there exists a countable group �
and a Borel action � Õ X such that E D EX� .

The proof of Feldman–Moore Theorem (2 • 2) will use a suitable uniformization theorem. Suppose X and Y are any
sets, and P � X � Y . As a mater of notation,

• x 2 X has Px D ¹y 2 Y W hx; yi 2 P º;
• y 2 Y has P y D ¹x 2 X W hx; yi 2 P º; and
• projX .P / D ¹x 2 X W 9y 2 Y.hx; yi 2 P /º.

2 • 3. Definition
For P � X � Y , P � � P is a uniformization iff for all x 2 projX .P /, there exists a unique y 2 Y with
hx; yi 2 P �.

So in essence, P � is the graph of a function f where f W projX .P /! Y such that f .x/ 2 Px holds. So AC implies
every P � X � Y can be uniformized.

Now suppose that X , and Y are standard Borel spaces, and P � X � Y is Borel. Does P necessarily have a Borel
uniformization? The answer is that it need not have one. For example, consider the following, due to Luzin.

2 • 4. Result
With P � X � Y and X , Y standard Borel spaces, if P has a Borel uniformization P �, then projX .P / is Borel.

Proof Sketch .:.
Suppose that P � is a Borel uniformization. Then projX W P

� ! X is injective, and so the image is Borel (by a
famous theorem of Luzin). But projX .P / D projX .P

�/. a

2 • 5. Corollary

There exists a Borel P � X � Y with X; Y standard Borel spaces, and with no Borel uniformization.

So in general, Borel sets in the plane don’t have Borel uniformizations. But there are several cases where there are, as
can be found (along with others) in Kechris’ book. This is due to Luzin–Novikov.
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2 • 6. Theorem
Suppose X , Y are standard Borel spaces and P � X � Y is a Borel subset such that Px is countable (perhaps
empty) for all x 2 X . Therefore,

1. projX .P / is Borel, and P has a Borel uniformization; and
2. Moreover, we can express P D

S
n2! Pn, where each Pn is the Borel graph of a partial function; i.e. if

Pn.x; y/ and Pn.x; z/, then y D z.

As an application of this, we get the following.

2 • 7. Corollary

Suppose that X , Y are standard Borel spaces and f W X ! Y is a countabletoone Borel map. Then imf is
Borel, and there exists a Borel map g W imf ! X such that f .g.y// D y for all y 2 imf .

Proof .:.
Apply Theorem 2 • 6 to P D ¹hy; xi W hx; yi 2 f º. a

We will continue to use Corollary 2 • 7 with smoothness.

Section 3. Smooth Countable Borel Equivalence Relations

3 • 1. Theorem
If E is a Borel equivalence relation with uncountable many classes, then id2N 6B E.

3 • 2. Definition
A Borel equivalence relation is smooth iff E 6B idZ for some (equivalently every) uncountable standard Borel
space Z.

We immediately get the following observation from this definition.

3 • 3. Result
If E is a smooth, countable, Borel equivalence relation on an uncountable Borel space, then E �B id2N .

We also get a nice, fairly easy theorem.

3 • 4. Theorem
If E is a countable Borel equivalence relation on a standard Borel space X , then the following are equivalent.

1. E is smooth.
2. There exists a Borel set T � X which intersects every Eclass in a unique point. (We say T is a Borel

transversal for E.)
3. There exists a Borel map s W X ! X such that s.x/ E x, and if x E y then s.x/ D s.y/. (We say s is a

Borel selector for E.)

Proof .:.
For (3)! (1), clearly s is a Borel reduction from E to idX .

For (1)! (2), suppose f W X ! Y is a Borel reduction from E to idY for some uncountable, standard Borel
space Y . So f is a countabletoone map. Hence A D imf is a Borel subset of Y , and there is an “inverse”
g W A! X such that f .g.a// D a for all a 2 A. Then g is injective and so T D img is Borel and satisfies the
desired property.

For (2)! (3), we can define a Borel selector by s.x/ D y iff x E y and y 2 T . a
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Note that this applies only to countable Borel equivalence relations. For example, there exists a smooth Borel equiv
alence relation with no Borel transversal. To see this, let X , Y , Z be such that X and Y are standard Borel spaces
whileZ � X �Y is Borel with projX .Z/ nonBorel. ThenZ is also a standard Borel space, and we can define a Borel
equivalence relation E on Z by hx; ui E hy; vi iff x D y. The map hx; ui 7! x is a Borel reduction from E to idX ,
and so E is smooth. But any proposed T � Z which is a Borel transversal for E has hx; ui 7! x as injective on T .
Hence projX .T / D projX .E/ D projX .Z/ is Borel, contradicting construction.

Furthermore, there is a countable Borel equivalence relation which isn’t smooth. At this point, this is easiest to show
using measure, although an argument using category can be given.

3 • 5. Theorem
E0 is not smooth

Proof .:.
Let � be the usual uniform product probability measure on 2N . For each n 2 N, let �n W 2N ! 2N be the Borel
bijection hx0; � � � ; xn; � � �i

�n
7�! hx0; � � � ; 1 � xn; � � �i, flipping just the nth entry.

Let � D
L
n2! Cn, where Cn D h�ni. Then � Õ h2N ; �i as a group of measurepreserving transformations.

Also clearly E0 D E2
N

� . Furthermore, � acts freely on 2N ; i.e. if 1 ¤  2 � , then  � x ¤ x for all x 2 X .

Suppose thatE0 is smooth. Then there exists a Borel transversal T � 2N . Since � acts freely, 2N D
F
2� "T .

This is because 1t1 D 2t2 implies �1
2 1t1 D t2. So as it’s a transversal, t1 D t2. But as it act’s freely, we get

a contradiction.

Since T is Borel, T is �measurable. Since � preserves �, �."T / D �.T / for all  2 � . Hence
1 D �.2N/ D

X
2�

�."T / D
X
2�

�.T /,

which is a contradiction a

Let’s return to Feldman–Moore Theorem (2 • 2). So more than just this, we have the following.

3 • 6. Theorem
Feldman–Moore Theorem (2 • 2) holds, and moreover � and � Õ X can be chosen such that

x E y $ x D y or there exists 1 ¤ g 2 � with g2 D 1 such that g � x D y

Proof .:.
Let E be a countable Borel equivalence relationon a standard Borel space X . Clearly we can suppose that X
is uncountable. (Otherwise, the theorem is trivial.) Applying Theorem 2 • 6, since E � X � X has countable
sections, we can express E D

S
n2! Fn where each Fn is the Borel graph of a partial function. Out of this, we

want to get a group action.

For each n;m 2 N, let Fn;m D Fn \ F
�1
m where F �1 D ¹hy; xi W hx; yi 2 F º. Then each Fn;m is the Borel

graph of an injective partial function; and E D
S
n;m Fn;m. Let �x D ¹hx; xi W x 2 Xº.

Claim 1
We can express X2 n�x D

S
p2N Ap � Bp where each Ap , Bp is a pair of disjoint Borel subsets.

Proof .:.
Since X is Borel isomorphic to R, it suffices to work with R. But this is easy for R, since we just take
sufficiently small discs with rational centers and radiuses. a

For each n;m; p, let Fn;m;p D Fn;m\ .Ap �Bp/. So we’re getting an injective function from a subset ofAp to a
subset ofBp , and we can get the inverse just by going back. Explicitly, Fn;m;p is the graph fn;m;p for some Borel
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bijection between disjoint Borel sets Dn;m;p and Rn;m;p . Hence we can define a corresponding Borel bijection
gn;m;p by

gn;m;p.x/ D

8̂<̂
:
fn;m;p.x/ if x 2 Dn;m;p
f �1
n;m;p.x/ if x 2 Rn;m;p
x otherwise.

Clearly g2n;m;p D 1. Since E n�X D
S
n;m;p2! Fn;m;p , we see that � D hgn;m;p W n;m; p 2 Ni satisfies our

requirements. a

Note that we can’t witness this necessarily by finitely generated groups, nor necessarily by free groups. For example,
F2 Õ P .F2/ by S

g
7�! gS yields a universal relation, and the fact that it can’t be realized by a free group uses something

called Popa superrigidity.

As a nice story, Thomas found this Popper’s superrigidity result on accident when searching something on Google,
noticing that this was precisely what was needed for this idea about free groups. As he investigated who Popper was,
he found that Popper was going to give a talk on the topic at UCLA, where Kechris works. And as it happened, Thomas
was able to get to the result first.

Section 4. Hyperfinite, and Universal Borel Equivalence Relations

Why do we focus on countable Borel equivalence relations? One big reason is Theorem 3 • 6, suggesting connections
with group theory, which yields lots of applications. In particular, the isomorphism relation on a class of (countable)
structures. As it turns out, this is a countable Borel equivalence relation iff the structures are all “finitely generated”
in a certain sensei. And then from here, it’s a matter of thinking about how complicated these relations can get. To do
this, it’s useful to develop milestones.

4 • 1. Definition
A countable Borel equivalence relation E is universal iff F 6B E for every Borel equivalence relation F .

So by definition, for any two universal, countable Borel equivalence relation E, F , E �B F . But this raises the
question, does such a relation exist?

The following result by Friedman–Stanley shows that there is no universal Borel equivalence relation.

4 • 2. Theorem
If E is any Borel equivalence relation, then there exists a Borel equivalence relationEC such that E <B E

C.

So instead, consider the following definition.

4 • 3. Definition
Let F2 be the free group on 2 generators. ThenE1 is the orbit equivalence relation of the Borel action F2 Õ P .F2/

via S
g
7�! g"S D ¹g � s W s 2 Sº.

Equivalently, consider the shift action of F2 on 2F2 defined by . � f /.x/ D f .�1x/ for f W F2 ! 2.

Note that we have this �1 to preserve that ı � . � f /.x/ D .ı/ � f .x/, as otherwise ı � . � f /.x/ D . � f /.ı � x/ D
f . � ıx/ which might not be f .ı � x/.

These two actions are the same by the following: consider f D �S . Then . � �S /.x/ D 1 iff �S .�1x/ D 1 iff
�1x 2 S iff x 2 S . Hence  � �S D �"S .

iin the sense that fixing just finitely many elements gives only one transformation
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We have the following target theorem.

4 • 4. Theorem (Target Theorem)

E1 is a countable Borel equivalence relation.

Now we look at a more general version of the shift action.

4 • 5. Definition
Let X be a standard Borel space and G a countable group. Then define XG D ¹p W p W G ! Xº with the product
Borel structure. The shift action G Õ XG is the Borel action g � p.h/ D p.g�1 ı h/. The corresponding orbit
equivalence relation is denoted E.G;X/.

For example, E1 D E.F2; 2/.

4 • 6. Proposition

Let G be a countable group and let X be a standard Borel Gspace. Then EXG 6B E.G; 2
N/.

Proof .:.
Let ¹Un W n 2 !º be a sequence of Borel subsets of X which separates points, meaning for any two points
x ¤ y, there are n;m 2 ! with x 2 Un n Um and y 2 Um n Un. Define the Borel map f W X ! .2N/G by
Œf .x/.g/�.n/ D 1 iff g�1.x/ 2 Un.

We claim that f is a Borel reduction fromEXG toE.G; 2N/. Mostly this consists in going through the definitions.
Firstly, suppose that y D h � x for some h 2 G. Then

Œf .y/.h/�.n/ D 1 iff Œf .hx/.g/�.n/ D 1

iff g�1hx 2 Un

iff .h�1g/�1x 2 Un

iff Œf .x/.h�1g/�.n/ D 1.
Thus f .y/.g/ D f .x/.h�1g/ and so f .y/ D h � f .x/.

Conversely, suppose that f .y/ D h � f .x/ for some h 2 G. Then for all n 2 N,
y 2 Un iff Œf .y/.1/�.n/ D 1

iff Œh � f .x/.1/�.n/ D 1

iff Œf .x/.h�1/�.n/ D 1

iff hx 2 Un.
So as ¹Un W n 2 !º separates points, y D h � x. a

4 • 7. Proposition

Let F! be the free group on countably many generators. ThenE.F! ; 2N/ is a universal countable Borel equivalence
relation.

Proof .:.
Let E be a countable Borel equivalence relation on a standard Borel space X . By Theorem 3 • 6, there exists a
countable group � and a Borel action � Õ X such that E is the corresponding orbit equivalence relation EX� .
Let � W F! ! � be a surjective homomorphism. Then we can define a Borel action F! Õ X by x

g
7�! �.g/ � x.

Clearly, E D EXF!
. So by Proposition 4 • 6,

E D EXF!
6B E.F! ; 2

N/ a
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4 • 8. Proposition

Suppose that G andH are countable groups and � W H ! G is a surjective homomorphism. If X is any standard
Borel space, then

E.G;X/ 6B E.H;X/

via the Borel reduction p 7! p� where p�.h/ D p.�.h//.

The proof of this is left to the reader that wants to be complete. Intuitively, the result holds since H is bigger than G.
Similarly, although we require a bit of a trick this time, we get the following proposition.

4 • 9. Proposition

Suppose G,H are countable groups and G 6 H . If X is a standard Borel space, then
E.G;X/ 6B E.H;X/.

Proof .:.
Fix some x0 2 X and consider the Borel map f W XG ! XH by p 7! p� where

p�.h/ D

´
p.h/ if h 2 G
x0 if h … G.

We claim that f is a Borel reduction from E.G;X/ to E.H;X/. Clearly if g � p D q for some g 2 G, then
g � p� D q�. What we want is the converse.

Conversely, suppose that h �p� D q� for some h 2 H . If h 2 G, then clearly h �p D q. So suppose h 2 H nG.
In this case, we must have that for all g 2 G, q.g/ D p.h�1g/ D x0 since h�1g … G. This means q�.h/ D x0
for all h 2 H , and so p� D q�, and p D q. a

Applying the (unproved) Target Theorem (4 • 4) and Proposition 4 • 9, we see that if G is a countable group with a free
nonabelian subgroup, then EP .G/

G �B E1.

4 • 10. Proposition

If G is a countable group, then E.G; 2Zn¹0º/ 6B E.G � Z; 3/.

Proof .:.

Consider the Borel map f W
�
2Zn¹0º

�G
! 3G�Z by p 7! p� by

p�.g; n/ D

´
p.g/.n/ if n ¤ 0
2 if n D 2.

We claim that f is a Borel reduction from E.G; 2Zn¹0º/ to E.G � Z; 3/. First, suppose that p; q 2
�
2Zn¹0º

�G
and that g � p D q for some g 2 G. Then it is easily checked that hg; 0ip� D q�.

Conversely, suppose that q� D hg; nip� for some hg; ni 2 G � Z. If n D 0, then clearly q D g � p. Suppose
n ¤ 0. Then for all hh;mi 2 G � Z, q�.h;m/ D p�.g�1h;m � n/. In particular, q.h/.n/ D q�.h; n/ D

p�.g�1h; 0/ D 2, a contradiction. a

One of the issues with E.F! ; 2N/ is that it’s basically impossible to visualize. We want to show E1 D E.F2; 2/ is
universal countable Borel instead by some reductions.

4 • 11. Proposition

Let G be a countable group and let C2 D ¹0; 1º be the cyclic group of order 2. Then
E.G; 3/ 6B E.G � C2; 2/

9
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Proof .:.
Consider the Borel map f W 3G ! 2G�C2 where p 7! p� defined by

p�.g; i/ D

8̂̂̂<̂
ˆ̂:
0 if p.g/ D 0
0 if p.g/ D 1 and i D 0
1 if p.g/ D 1 and i D 1
1 if p.g/ D 2.

We claim that f is a Borel reduction from E.G; 3/ to E.G � C2; 2/. First suppose p; q 2 3G and there exists
g 2 G such that q D g � p. Then clearly q� D .g; 0/p�. Next suppose that q� D .g; i/p�. If i D 0, then clearly
q D gp, as you don’t disturb the coding.

So suppose i D 1. First consider the case where there exists an h 2 G such that q.h/ D 1. Then q�.h; 0/ D 0

and q�.h; 1/ D 1. Note that for all ha; j i 2 G � C2,
q�.a; j / D .g; 1/p�.a; j / D p�.g�1a; j C 1/.

In particular, p�.g�1h; 0/ D q�.h; 1/ D 1 and so p.g�1h/ D 2 while p�.g�1h; 1/ D q�.h; 0/ D 0, which is a
contradiction. Thus q 2 ¹0; 2ºG , and it follows that q D g � p. a

Now we can go through to prove Target Theorem (4 • 4).

Proof of Target Theorem (4 • 4) .:.
Let E be a countable Borel equivalence relation. Then

E 6B E.F! ; 2
N/ �B E.F! ; 2

Zn¹0º 6B E.F! � Z; 3/ 6B E.F! � Z � C2; 2/ 6B E.F! ; 2/

since there is a surjection from F! to F! � Z � C2. And this Borel reduces to E.F2; 2/ since F! ,! F2.

Recall that by HKL (Harris–Kechris–Louveau?), E0 is the <Bsuccessor of id2N . We next study countable Borel
equivalence relations E such that E �B E0.

4 • 12. Definition
A Borel equivalence relation E is finite iff every Eclass is finite.
A Borel equivalence relation E on a standard Borel space X is hyperfinite iff there exists an increasing chain

F0 � F1 � � � � � Fn � � � �

of finite Borel equivalence relations on X such that E D
S
n2! Fn.

Remark: If F is a finite Borel equivalence relation onX , then F is smooth. This is just becauseX is Borel isomorphic
to R: there is a Borel linear order < of X , and so we can define a Borel selector s by taking s.x/ D min.Œx�E /.

Remark: E0 is hyperfinite. To see this, define Fn on 2N by x Fn y iff x.`/ D y.`/ for all ` � n. Then F0 � F1 �
� � � � Fn � � � �, and E0 D

S
n2! Fn.

4 • 13. Open Problem

Suppose that E1 � E2 � � � � � En � � � � for n 2 ! are hyperfinite Borel equivalence relations. Is E D
S
n2! En

hyperfinite?

Despite looking trivial, this isn’t so easy. And Simon himself conjectures that it’s probably false. Consider the following
characterization of hyperfinite Borel equivalence relations due to Dougherty–Jackson–Kechris.

4 • 14. Theorem
If E is a nonsmooth hyperfinite Borel equivalence relation, then E �B E0.

The new target theorem is the following:

10
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4 • 15. Theorem (Second Target Theorem)

If E is a countable Borel equivalence relation on a standard Borel space X , then the following are equivalent:
(a) E is hyperfinite.
(b) There exists a Borel action Z Õ X such that EXZ D E.

Proof of (a) implies (b) .:.
First we show that (a) implies (b). Express E D

S
n2! Fn as an increasing chain F0 � F1 � � � � � Fn � � � � of

finite Borel equivalence relations such that F0 D idX . Let < be a Borel linear ordering ofX . Then we can define
an increasing sequence of Borel partial orderings <n of X as follows:

• <0 D ;.
• x <nC1 y iff x <n y or .x FnC1 y and min.Œx�Fn

/ < min.Œy�Fn
//.

Then we see inductively that
1. <n linearly orders each Fnclass.
2. If C ¤ D are Fnclasses such that ŒC �FnC1

D ŒD�FnC1
, then either C <nC1 D orD <nC1 C .

Let < D
S
n<! <n. Then <! is a Borel partial order which linearly orders each Eclass. Furthermore, the order

type of each Eclass is either
(i) n for some n � 1;
(ii) !;
(iii) !�, the reverse of !; or
(iv) !� C !, the order type of Z.

We obtain a Zaction by defining a Borel bijection T W X ! X as follows.

Case i. Suppose Œx�E has order type 1 � n < ! under <! , say, x0 <! x1 <! � � � <! xn�1. Then we define

T .xi / D

´
xiC1 if i < n � 1
x0 if i D n � 1

.

Case ii. Suppose that Œx�E has order type ! under <! , say, x0 <! x1 <! � � � <! xn <! � � �. Then T acts on
Œx�E as the infinite cycle

.� � � x3 x1 x0 x2 x4 � � � /

Case iii. If Œx� has order type !� under <! , we handle it similarly to (Case ii).
Case iv. Finally, if Œx�E has order type !� C ! under <! , then we define T .z/ to be the <!successor of z.

The proof that (b) implies (a) needs some preparation. First note that if E is a countable Borel equivalence relation on
X , then

Y D ¹x 2 X W Œx�E is finiteº
is Borel and E�Y is finite and hence hyperfinite.

Hence we can restrict our attention to aperiodic equivalence relations, i.e. those equivalence relations such that every
class is infinite.

4 • 16. Definition
Let E be an aperiodic countable Borel equivalence relation. Then a vanishing sequence of markers is a decreasing
sequence A0 � A1 � � � � � An � � � � such that

1. Each An is a complete Borel section for E, i.e. An \ Œx�E ¤ ; for all x 2 X ; and
2.

T
n2! An D ;.

4 • 17. Lemma (The Marker Lemma)

Every aperiodic countable Borel equivalence relation admits a vanishing sequence of markers.

11
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Proof .:.
Without loss of generality,E is a relation on 2N . For each x 2 2N , and n 2 !, let Sn.x/ be the lexiographicleast
s 2 2n such that jŒx�E \Usj is infinite, whereUs D ¹f 2 2n W s D f º. Then we define x 2 An iff x�n D Sn.x/.
Then hAn W n 2 !i is a decreasing sequence of Borel subsets which intersects each Eclass in infinitely many
elements. Note that A D

T
n2! An intersects each Eclass in at most one element. Thus ¹An n A W n 2 !º is a

vanishing sequence of markers. a

Now we prove that (b) implies (a) from above.

Proof of (b) implies (a) from Second Target Theorem (4 • 15) .:.
We want to show that if Z Õ X is a Borel action on a Standard Borel space, then E D EXZ is hyperfinite.

So without loss of generality, E is aperiodic. Let T W X ! X be a Borel bijection which generates the Zaction
and let < be the Borel partial order on X defined by

x < y iff 9n > 0.T n.x/ D y/.
Then < gives a Zordering of every Eclass. By The Marker Lemma (4 • 17), let ¹An W n 2 !º be a vanishing
sequence of markers for E. Define

Y D ¹x 2 X W there is an n 2 ! such that An \ Œx�E has a < least or greatest elementº.
Then Y is an Einvarant Borel subset such that E�Y is smooth, because we have a Borel selector f W Y ! Y

for E. Now for each n 2 !, we can define a finite Borel equivalence relation Fn by
x Fn y iff x D y _ x; y 2 ¹T `.f .x// W �n � ` � nº.

Then F0 � F1 � � � � � Fn � � � �, and E D
S
n2! Fn. Thus E�Y is hyperfinite.

So without loss of generality, Y D ;. Thus for each x 2 X and each n 2 !, An \ Œx�E is unbounded in both
directions. Hence we can define a finite Borel equivalence relation by

x Fn y iff x D y _ An \ Œx; y� D ;.
Then F0 � F1 � � � � � Fn � � � � and E D

S
n2! Fn. Thus E is hyperfinite. a

Now we get some closure operations on the class of hyperfinite Borel equivalence relations.

4 • 18. Theorem
Let E, F be countable Borel equivalence relations on standard Borel spaces X , Y .
(a) If X D Y , and E � F with F hyperfinite, then E is hyperfinite (trivial).
(b) If F is hyperfinite and E 6B F , then E is hyperfinite (nontrivial).
(c) If E is hyperfinite and A � X is Borel, then E�A is hyperfinite (trivial).
(d) If A is a complete Borel section for E and E�A is hyperfinite, then E is hyperfinite (nontrivial).
(e) If E and F are hyperfinite, then E � F on X � Y is hyperfinite (trivial)

Proof .:.
(d) By Feldman–Moore Theorem (2 • 2), there exists a countable group G D ¹gn W n 2 !º and a Borel action

G Õ X such that E D EXG . For each n 2 !, let n.x/ be the least n 2 ! such that gn � x 2 A. Let
E�A D

S
n2! Fn where ¹Fn W n 2 !º is an increasing sequence of finite Borel equivalence relations.

Let En be the finite Borel equivalence relation such that x En y iff either x D y or n.x/; n.y/ < n and
gn.x/ � x Fn gn.y/ � y. Clearly, E D

S
n2! En is hyperfinite.

(b) Let f W X ! Y be a Borel reduction from E to F . Since f is countabletoone, A D f "X is a Borel
subset of Y , and there exists a Borel inverse g W A ! X . By (c), F�A is hyperfinite. Also, since g
is injective, it follows that B D g"A is Borel, and it is clearly a complete section, since each x 2 X is
mapped to something in A, which is taken to another representative by g. Since E�B Š F�A, it follows
that E�B is hyperfinite. By (d), E is also hyperfinite. a

12
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Recall Open Problem 4 • 13: ifE D
S
n2! En is the union of hyperfinite Borel equivalence relations, isE hyperfinite?

Consider a related idea using the domination order.

4 • 19. Definition

If f; g 2 NN , then f 6� g iff f .n/ � g.n/ for all but finitely many n 2 N. Write f D� g iff f .n/ D g.n/ for
all but finitely many n, so that f DC g iff f 6� g and g 6� f .

Note that D� is clearly a countable Borel equivalence relation, and it is easily checked that D��B E0. Observe that
if ¹fn W n 2 Nº � NN , then there exists a g 2 NN such that fn 6� g for all n 2 !. To see this, just define
g.`/ D 1Cmaxn�` fn.`/.

Observe also that if E is a countable Borel equivalence relation on a standard Borel space X , and ' W X ! NN is a
Borel map, then there exists a map � W X ! NN such that

• if x E y, then �.x/ D �.y/;
• '.x/ �� �.x/ for all x 2 X .

Note that we can’t ensure that � is Borel unless E is smooth.
4 • 20. Theorem

There exists a Borel map ' W 2N ! NN such that there doesn’t exist a Borel map � W 2N ! NN satisfying
• x E0 y implies �.x/ D �.y/;
• '.x/ 6� �.x/ for all x 2 2N .

The proof of this will be delayed until the next section. Suppose we have this map '. When we look at � , mapping
to the Baire space, we are sending E0 things to identical things. Since E0 isn’t smooth, this shouldn’t be a Borel
reduction. So this map must have a huge kernel in the sense that we get a counter example to the second property. To
show this, we will use category. Why not use measure? Because it cannot work here.

We will make use of one of the only two theorems Simon knows from probability theory: the Borel–Cantelli Lemma
below.

4 • 21. Lemma (Borel–Cantelli)

Suppose hX;�i is a standard Borel probability space, and En � X is a Borel subset for each n 2 N. IfP
n2N �.En/ <1, then

� .¹x 2 X W x 2 En for infinitely many n 2 Nº/ D 0.

4 • 22. Theorem

Let hX;�i be a standard Borel probability space. Let ' W X ! NN be any Borel map. Then there exists a fixed
h 2 NN such that

�
�
¹x 2 X W '.x/ 6� hº

�
D 1.

Proof .:.
For each n 2 N, there exists an h.n/ 2 N such that�.¹x 2 X W '.x/.n/ > h.n/º/ < 2�.nC1/. By Borel–Cantelli
(4 • 21),

�.¹x 2 X W '.x/ 6� hº/ D 1 a

4 • 23. Definition
Let E be a countable Borel equivalence relation on a standard Borel space. Then E is BorelBounded iff for every
Borel map ' W X ! NN , there exists a Borel homomorphism � W X ! NN fromE toD� such that '.x/ 6� �.x/

for all x 2 X .

4 • 24. Theorem
If E is hyperfinite, then E is BorelBounded.

13
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Proof .:.
Express E D

S
n2! Fn as the union of a chain of finite Borel equivalence relations. Define � W X ! NN by

�.x/.n/ D max¹'.y/.n/ W y Fn xº.
Then � is a homomorphism from E toD�, and '.x/.n/ � �.x/.n/ for all n 2 ! a

4 • 25. Open Problem

Is every BorelBounded countable Borel equivalence relation hyperfinite?
Does there exist a nonBorelBounded, countable Borel equivalence relation?

Remark: assuming Martin’s Conjecture,�T isn’t BorelBoundedii. In fact, it’s enough to show that if � W 2N ! 2N is
a Borel homomorphism from�T to E0, then � sends a cone to a single E0 class.

Exercise 1
Suppose E and F are countable Borel equivalence relations. If E 6B F and F is BorelBounded, then E is also
BorelBounded.

Section 5. Baire Category Methods

5 • 1. Definition
Let X be a Polish space.

• C � X is comeager iff there are dense open subsetsDn for n < ! such that
T
n2! Dn � C .

• M � X is meager iff X n C is comeager.

Recall the following theorem.

5 • 2. Theorem (Baire Category Theorem)

If C is a comeager subset of a Polish space, then C is dense in X .

Usually, we only require C to be nonempty.

5 • 3. Definition
LetX be a Polish space. ThenA � X has the Baire property (BP) iff there exists an open U � X such thatA 4 U

is meager.

Which sets have the Baire property? The following theorem tells us that we get the Borel sets together with the meager
sets, in the sense that the σalgebra generated by these has the Baire property.

5 • 4. Theorem
LetX be a Polish space and � be the set of subsets ofX with the Baire property. Then � is the � algebra generated
by the open sets and the meager sets.

5 • 5. Corollary

If A � X is Borel, then A has the Baire property.

Using this and the following couple of results, it’s very easy to see that E0 isn’t smooth.

5 • 6. Theorem
Suppose X , Y are Polish and f W X ! Y is Borel. Then there exists a comeager C � X such that f �C is
continuous.

iiMartin's Conjecture is that the only homomorphisms from �T to �T are the jumps on cones.

14
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Proof .:.
Let ¹Un W n < !º be an open basis for the toppology of Y . Since each f �1"Un is Borel, there exists an open
Vn such that Mn D f �1"Un 4 Vn is meager. Let Cn D X nMn. Then C D

T
n2! Cn is comeager. Also

f �1"Un \ C D Vn \ C . But this is saying precisely that f �C is continuous. a

5 • 7. Proposition

Suppose that � Õ X is a continuous action of a countable group � on a Polish space X . If A � X is comeager,
then ¹x 2 X W � � x � Aº is comeager.

Proof .:.
Since � Õ X is continuous, for each g 2 � , g�1A is also comeager. Hence B D

T
g2� g

�1A is also comeager.
If x 2 B , then x 2 g�1A for all g 2 � . And so g � x 2 A for all g 2 � . a

We next give a category proof of the fact that id2N <B E0. In fact, we prove the following, stronger result sometimes
called “generic ergodicity” theorem.

5 • 8. Theorem (Generic Ergodicity Theorem)

If X is a Polish space and � W 2N ! X is a Borel homomorphism from E0 to idX , then there exists a comeager
C � 2N such that ��C is a constant. In particular, id2N <B E0.

Proof .:.
For each n 2 !, let �n W 2N ! 2N be the Borel bijection defined by

.x0; � � � ; xn�1; xn; xnC1; � � � /
�n
7�! .x0; � � � ; xn�1; 1 � xn; xnC1; � � � /.

Take � D
L
n2!h�ni. Then � Õ 2N is continuous and the orbit equivalence relation is E0. Also notice that for

all x 2 2N , the orbit � � x is dense in 2N .

Suppose that � W 2N ! X is a Borel homomorphism from E0 to idX : Then there exists a comeager C � 2N

such that ��C is continuous. Since � Õ 2N is continuous, there exists a comeagerD � C such that � � x � C
for all x 2 D. So fix some x 2 D. Then

• � is constant on � � x.
• � � x is dense in C .
• � is continuous on C .

Hence ��C is constant. a

5 • 9. Theorem

There exists a Borel map ' W 2N ! NN such that there doesn’t exist a Borel map � W 2N ! NN such that
• If x E0 y then �.x/ D �.y/;
• '.x/ 6� �.x/ for all x 2 2N .

Proof .:.
We define ' W 2N ! NN as follows. If x 2 2N , then there exists A � N such that x D �A.

Case 1. If A is finite, let '.x/ be the identically zero function.
Case 2. Otherwise let ¹an W n 2 !º be the increasing enumeration of A. Then we define '.x/.n/ D an.

Claim 1

For each h 2 NN ,Dh D ¹x 2 2N W '.x/ 66� hº is comeager.

15
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Proof .:.
For each m 2 !,

Dh
m D ¹x 2 2

N
W 9n � m.'.x/.n/ > h.n//º

is clearly dense open. HenceDh �
T
m2! D

h
M is comeager. a

Suppose such a map � W 2N ! NN exists, i.e. a Borel homomorphism from E0 to idNN . Then there exists a
comeager C � 2N and a fixed h 2 NN such that �.x/ D h for all x 2 C . Also, Dh \ C is comeager; and so
there exists an x 2 Dh \ C . But then '.x/ 66� h D �.x/, a contradiction. a

The next target theorem is that category isn’t useful for anything else.

5 • 10. Theorem (Third Target Theorem)

If E is a countable Borel equivalence relation on a Polish space X , then there exists a comeager Einvariant Borel
subset C � X such that E�C is hyperfinite.

Fortunately, this is false using measure instead of category. To prove this, we will use the Kuratowski–Ulam theorem.

5 • 11. Definition
ith each A � X , we associate the property A.x/ iff x 2 A, and we write 8�xA.x/ iff A is comeager. Here ‘8�’ is
sometimes known as a category quantifier.

In essence, the Kuratowski–Ulam theorem says that category quantifiers commute: 8�x 2 X8�y 2 Y.A.x; y// iff
8�y 2 Y8�x 2 X.A.x; y//.

5 • 12. Theorem (Kuratowski–Ulam)

Suppose that X , Y are Polish and A � X � Y has the Baire property. Therefore
A is comeager iff 8

�x 2 X.Ax is comeager/ iff 8
�y 2 Y.Ay is comeager/.

Despite looking rather unimportant, the usefullness of this theorem is immense.

5 • 13. Definition
Let E be a countable Borel equivalence relation on a Polish space X . Then a cascade is a sequence

X D S0 � S1 � S2 � � � � � Sn � � � �

of Borel complete sections for E together with Borel retractions fn W Sn ! SnC1. (Here retraction means
fn�SnC1 D idSnC1

and fn.x/ E x for all x 2 Sn.)

Given a cascade ¹Sn; fn W n 2 !º, we can define a sequence of Borel equivalence relations En by x En y iff
fn ı fn�1 ı : : : ı f0.x/ D fn ı fn�1 ı : : : ı f0.y/. Then each En is smooth; and E0 � E1 � � � � � En � � � � � E.

5 • 14. Lemma
With the above hypothesis, if each fn is finitetoone, then E! D

S
n2! En is hyperfinite.

So the planwill be to construct a suitable cascade such that formost elements of the space, the union of these equivalence
relations is the whole space E.

Proof of Third Target Theorem (5 • 10) .:.
Applying Theorem 3 • 6, let ¹gn W n 2 !º be a sequence of Borel bijections. gn W X ! X with g2n D 1 such that
g0 D idX and x E y iff 9n.gn.x/ D y/. Also, fix some Borel linear ordering < of X . For each Borel subset
S � X , and each n 2 !, let F Sn be the Borel equivalence relation on S defined by

x F Sn y iff x D y _ gn.x/ D y.
As involutions, this is symmetric. Here eachF Sn class has at most 2 elements. Hence the setˆn.S/ of<minimal
elements of each F Sn class is also Borel. Also, if S is a complete section, so is ˆn.S/.
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Let f Sn W S ! ˆn.S/ be the Borel map which sends each x 2 S to the <minimal element of Œx�F S
n
. The

strategy for the rest of the proof is to define for each element of Baire space, there is a a corresponding cascade
that uses these ingredients, and then use Kuratowski–Ulam (5 • 12).

For each ˛ 2 NN , we define a cascade ¹S˛n ; f ˛n W n 2 !º by
• S˛0 D X ;
• S˛nC1 D ˆ˛.n/.S

˛
n /; and

• f ˛n D f
S˛

n

˛.n/
.

Let ¹E˛n W n < !º be the corresponding sequence of finite Borel equivalence relations and letE˛! D
S
n2! E

˛
n �

E be the corresponding hyperfinite Borel equivalence relation. The theorem follows from the following series of
claims.

Claim 1

There exists an ˛ 2 NN and a comeager Einvariant Borel C � X such that E�C D E˛!�C .

In fact, we prove the stronger claim below.

Claim 2

8�˛ 2 NN 8x 2 X .Œx�E D Œx�E˛
!
/.

By Kuratowski–Ulam (5 • 12), it is enough to show the following claim instead.

Claim 3

8x 2 X 8�˛ 2 NN .Œx�E D Œx�E˛
!
/.

Proof .:.
Fix some x 2 X . It is enough to show that for each y 2 Œx�E ,

A D ¹˛ 2 NN
W y 2 Œx�E˛

!
D

[
n2!

Œx�E˛
n
º

is dense open, since then the countable intersection is comeager.

Claim 4
A is open.

Proof .:.
Suppose that ˛ 2 A. Then there exists an n 2 ! such that y 2 Œx�E˛

n
. It follows that

N˛�nC1 D ¹ˇ 2 NN
W ˇ�nC 1 D ˛�nC 1º � A.

is a neighborhood of ˛, and so A is indeed open. a

Claim 5
A is dense.

Proof .:.
Fix some basic open Ns where s 2 NnC1. Consider the “finite cascade” defined by

S0; f0; S1; f1; � � � ; Sn; fn; SnC1.
Where these are the functions determined by the initial values. Let x0 D fn ı � � � ı f0.x/ and y0 D

fn ı � � � ı f0.y/. Since x0 E y0, there exists a k 2 ! such that gk.x0/ D y0. Let ˛ 2 NN be such that
s � ˛ and ˛.nC 1/ D k. Then ˛ 2 A. And so A is also dense. a

a
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a

Section 6. Measure theoretic methods

Question: suppose that G is a countable group and G Õ X is a Borel action on a standard Borel space. Does the
complexity of EXG reflect the complexity of G?

To some extent, there is some truth here. For example, if G D Z, we can only get hyperfinite things. Unfortunately,
there is an easy counterexample. So let G be any countable group, and let G Õ G � Œ0; 1� be the Borel action
g � hh; ri D hgh; ri. Then the Borel map hg; ri 7! h1G ; ri shows that EG�Œ0;1�

G is smooth.

So what is wrong with this, and how can we eliminate this kind of triviality? One issue with the above idea is that the
action is free, but also there is no invariant probability measure.

6 • 1. Proposition

Suppose G is a countable group and G Õ X is a free Borel action on a standard Borel space X . If there exists a
Ginvariant, Borel, probability measure � on X , then EXG isn’t smooth.

Proof .:.
Suppose thatEXG is smooth. Then there exists a Borel transversalT � X . SinceG Õ X is free,X D

F
g2G g"T .

So 1 D
P
g2G �.g"T / D

P
g2G �.T /, which is a contradiction. a

6 • 2. Definition
Let G be countable and let X be a standard Borel Gspace. A Ginvariant probability measure � is ergodic iff
whenever A � X is a Ginvariant Borel subset, then �.A/ D 1 or �.A/ D 0.

We have another characterization due to the following theorem. Note thatf W X ! Y isGinvariant ifff .g�x/ D f .x/
for all x 2 X and g 2 G.

6 • 3. Theorem
If � is a Ginvariant, Bore, probability measure, then the following are equivalent:

1. � is ergodic;
2. If Y is a standard Borel space, and f W X ! Y is Ginvariant, then there is a Ginvariant Borel M � X

with �.M/ D 1 and such that f �M is constant.

Proof .:.
(2)! (1). Suppose A � X is a Ginvariant, Borel subset. Define f W X ! 2 by f .x/ D 1 iff x 2 A. Since

A is Ginvariant, f is Ginvariant. Hence there exists a Ginvariant BorelM � X with �.M/ D 1

such that f �M is constant. So �.A/ D 1 or �.A/ D 0.

(1)! (2). Without loss of generality, Y D Œ0; 1�, since we can expand to an uncountable space if necessary, and
it will be isomorphic to Œ0; 1�. Let Z0 D Œ0; 1�. Suppose inductively that we have defined an interval

Zn D

�
an

2n�1
;
an C 1

2n�1

�
for some 0 � an < 2n�1 such that �.f �1"Zn/ D 1. Let

InC1 D

�
2an

2n
;
2an C 1

2n

�
JnC1 D

�
2an C 1

2n
;
2an C 2

2n

�
.

Then f �1"InC1 and f �1"JnC1 are Ginvariant, Borel subsets. And so either �.f �1"InC1/ D 1 or
�.f �1"JnC1/ D 1. In the former case, letZnC1 D InC1; in the latter, setZnC1 D JnC1, the closure
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of JnC1.

Clearly,M D
T
n2! f

�1"Zn is a Ginvariant, Borel subset with �.M/ D 1, and such that f �M is
constant. a

Now we want something stronger than merely being ergodic.

6 • 4. Definition
Let G be a countable group, and let X be a standard Borel Gspace. The action G Õ X is uniquely ergodic iff
there is a unique Ginvariant probability measure � on X .

Clearly, we should have the following.

6 • 5. Theorem
If G Õ hX;�i is uniquely ergodic, then G Õ hX;�i is ergodic.

Proof .:.
Suppose that G Õ hX;�i isn’t ergodic. We need to find two different probability measures. Then there exists a
Borel A � X such that 0 < �.A/ < 1, and 0 < �.X nA/ < 1 with both A and X nA Ginvariant. Then we can
define Ginvariant probability measures �1 ¤ �2 by

�1.Y / D
�.Y \ A/

�.A/

�2.Y / D
�.Y \ .X n A//

�.X n A/
a

6 • 6. Example (Abstract Example)

Let K be a separable, compact group. Then there exists a unique probability measure � on K such that � is K
invariant under the lefttranslation action of K Õ K; namely, the Haar measure. If � < K is a countable, dense
subgroup, then � Õ hK;�i is uniquely ergodic.

6 • 7. Example (Concrete Example)

Let K D
Q
n2! Cn where each Cn D ¹0; 1º of order 2. Then K is compact and the Haar measure is the usual

uniform product probability measure. Let � D
L
n2! Cn, which is a dense subgroup. Then EK� D E0 and

� Õ hK;�i is uniquely ergodic.

This then gives a theorem about E0, which is a third proof that E0 isn’t smooth. In some sense, this states that the
kernel is large in terms of measure, whereas last time we proved that the kernel is large in terms of category.

6 • 8. Theorem

Let � be the usual product measure on 2N . If f W 2N ! 2N is a Borel homomorphism fromE0 to id2N , then there
exists an E0invariant Borel subsetM � 2N with �.M/ D 1 such that f �M is constant.

We often want every infinite subgroupH < G to act ergodically. Here’s a nonexample of this happening.

6 • 9. Example (Non-example)

Let K D
Q
n2! Cn be as above. Let � D

L
n�1 Cn and H D

Q
n�1 Cn. Then H is �invariant and �.H/ D 1

2
,

since it’s an index 2subgroup.
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6 • 10. Definition
Let G be a countable group and let X be a standard Borel Gspace with invariant probability measure �. Then
G Õ hX;�i is strongly mixing iff for any Borel subsets A;B � X , and any sequence hgn W n 2 !i of distinct
elements of G, either �.B/ D 0 or

lim
n!1

�.gn"A \ B/
�.B/

D �.A/.

Note that if �.B/ D 0 we still have limn!1 �.g"A \ B/ D 0 D �.B/ � �.A/. Note further that the literature often
has “weakly mixing” in addition to “strongly mixing”, so one must be careful with which version is referred to if just
“mixing” is used.

With the above hypotheses, ifH 6 G is an infinite subgroup, thenH Õ hX;�i is also strongly mixing. It also follows
that if you’re strongly mixing, then you’re ergodic, just by taking A D B for a Ginvariant A.

6 • 11. Theorem
If G Õ hX;�i is strongly mixing, then G Õ hX;�i is ergodic.

Proof .:.
Suppose A � X is Borel and Ginvariant. Let G D ¹gn W n 2 !º. Thus

�.A/2 D lim
n!1

�.gn"A \ A/ D lim
n!1

�.A/ D �.A/.

This implies �.a/ is either 0 or 1. a.

As a convention, if G is countably infinite, then the uniform product probability measure on 2G is denoted by �.
Clearly G Õ h2G ; �i is measurepreserving. This is usually called the Bernoulli action.

6 • 12. Theorem
G Õ h2G ; �i is strongly mixing.

Proof .:.
First suppose that there exist finite S; T � G and subsets F � 2S , H � 2T such that

A D ¹f 2 2G W f �S 2 F º B D ¹f 2 2G W f �T 2 Hº.
Suppose hgn W n 2 !i is a sequence of distinct elements of G. Since G Õ G is free, for all but finitely many
n 2 !, gn.S/ \ T D ;; and so the events gn.A/ and B are independent:

�.gn"A \ B/
�.B/

D �.gn"A/ D �.A/.

Thus the limit limn!1 �.gn"A \ B/ D �.A/�.B/. In general, if C � 2G is Borel, then for every " > 0, there
exists a finite S � G and an F � 2S such that

�
�
C 4

®
f 2 2G W f �S 2 F

¯�
< ".

The result follows easily. a

6 • 13. Definition
If G is countably infinite, then

.2/G D ¹x 2 2G W 8g 2 G n ¹1Gº.g � x ¤ x/º

is the free part of G Õ 2G . We define EG D E.2/
G

G .

Fortunately, we keep the probability measure around.

6 • 14. Proposition

�..2/G/ D 1, where � is the uniform product probability measure on 2G .
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Proof .:.
It is enough to show that for each 1 ¤ g 2 G,

�.¹x 2 2G W g � x D xº/ D 0.
Let H D hgi be the subgroup generated by g. Then g � x D x iff x is constant on each coset Ht . The result
follows easily. a

Note that ifH 6 G, then EH 6B EG . To see this, we can define a Borel reduction x 7! x� by

x�.g/ D

´
x.g/ if g 2 H
0 otherwise.

Here’s a question: to what extent does the converse hold? The answer is that it doesn’t hold in general, since it’s
obviously false for hyperfinite things, but we will move to a setting where the it is almost true. In particular, we will
move to the world where we can apply Popa superrigidity, and in particular, groups with a normal, Kazhdan group.

6 • 15. Definition
A countable Borel equivalence relationE on a standard Borel spaceX is free iff there is a free Borel actionG Õ X

of a countable group such that E D EXG .

For example, EG is clearly free.

6 • 16. Definition
E is essentially free if there exists a free countably Borel equivalence relation F such that E 6B F .

For example, take .2/Z t ¹x0º, since we can just add a few elements to make sure the action on x0 is free. A question
is now brought up: is everything essentially free? In particular, is E1 essentially free? This was answered by Simon
using an easy consequence of Popa Superrigidity. First some definitions.

6 • 17. Definition
Let E be a countable Borel equivalence relation on a standard Borel space X . A probability measure � on X is
Einvariant if for some (equivalently every) Borel action G Õ X of a countable group such that E D EXG , � is
Ginvariant.

6 • 18. Definition
Suppose E, F are countable Borel equivalence relation on X , Y , and � is an Einvariant probability measure.
Then a Borel homomorphism f W X ! Y from E to F is �tivial iff there exists a Borel Z � X with �.Z/ D 1
such that f sends Z to a single F class.

6 • 19. Definition
If G,H are countable groups, then a homomorphism � W G ! H is a virtual embedding iff j ker�j < ℵ0.

The following is an easy consequence of Popa Superrigidity.

6 • 20. Theorem (Black Box)

Let S be any countable group and let G D SL3.Z/ � S .
LetH be any countable group and letH Õ Y be a free Borel action on a standard Borel space Y .
Therefore, if there exists a�nontrivial Borel homomorphism fromEG toEYH , then there exists a virtual embedding
from G toH .

Now we give a theorem that shows how we use this, as we are not yet prepared to prove it yet.

6 • 21. Theorem
IfE is an essentially free, countable Borel equivalence relation, then there exists a countableG such thatEG 66B E.

6 • 22. Corollary

E1 isn’t essentially free.
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In fact, this says that of the essentially free Borel equivalence relations, there isn’t a universal one. To prove Theorem
6 • 21, we will make use of two grouptheoretic results.

6 • 23. Theorem (B.H. Neumann)

There exist uncountably many finitely generated groups up to isomorphism.

6 • 24. Proposition

If L is any group, then the free product L � Z has no nontrivial, finite, normal subgroups.

Proof of Theorem 6 • 21 .:.
Without loss of generality, we can suppose that E D EYH for some free Borel action H Õ Y . Since there are
uncountably many finitely generated groups. Up to isomorphism, there exists a finitely generated L such that L
doesn’t embed in H , since H has only countably many finitely generated subgroups. Let S D L � Z. Then S
has no nontrivial finite normal subgroups. Finally, let G D SL3.Z/ � S .

Suppose f W .2/G ! EYH is a Borel reudction from EG to EYH D E. Then f is a �nontrivial Borel homomor
phism. Hence by Black Box (6 • 20), there exists a virtual embedding � W G ! H . Since ker� D 1, it follows
that S embeds inH ; and hence L embeds in G, a contradiction. a

6 • 25. Theorem
There exist uncountably many (continuum) free, countably Borel equivalence relations up to Borel bireducibility.

In fact, we have a rich supply of nonessentially free ones.

6 • 26. Theorem
There exist uncountably many nonessentiallyfree countable Borel equivalence relations up to Borel bireducibility.

First we prove Theorem 6 • 25. What examples of essentially free things do we know? So far, EG . One issue we
encounter is to make sure our coding S from Black Box (6 • 20) doesn’t embed in SL3.Z/. To proceed, we will make
use of the following theorem

6 • 27. Theorem
SL3.Z/ contains a torsionfree subgroup of finite index.

Proof .:.
To quote a famous theorem, by Selberg’s theorem, every finitely generated, linear group over a field of charac
teristic 0 contains a torsionfree subgroup of finite index. a

One last thing we require (which it just so happens is something we can prove) is the following.

6 • 28. Lemma
IfH;K 6 G are any groups, then ŒK W K \H� 6 ŒG W H�.

Proof .:.
Let ¹ti W i 2 I º be coset representatives for K \H in K. It is enough to show that if i ¤ j , then Hti ¤ Htj .
Suppose Hti D Htj . Then there exist a; b 2 H such that ati D btj and so ti t�1j D a�1b 2 H \ K. So that
.H \K/ti D .H \K/tj , a contradiction. a

Proof of Theorem 6 • 25 .:.
Let P be the set of primes. For each p 2 P , let Ap D

L
n2! Cp be the direct sum of countably many copies of

the cyclic group Cp of order p.

For eachC � P , letGC D SL3.Z/˚
L
p2C Ap . We will show thatEGC

6B EGD
iffC � D, which is certainly

enough to get uncountably many of these.
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If C � D, then GC 6 GD , and so EGC
6B EGD

. Conversely, suppose EGC
6B EGD

. Then there exists a
virtual embedding (by Black Box (6 • 20))

� W SL3.Z/ �
M
p2C

Ap ! SL3.Z/ �
M
q2D

Aq .

To make sure the coding actually works, let N E SL3.Z/ be a torsionfree subgroup of finite index, and let
F D SL3.Z/=N , a certain finite group. Let

' W SL3.Z/ �
M
q2D

Aq ! F �
M
q2D

Aq

be the canonical surjection. The kernel of this will be N , and so it will be torsion free. Fix some p 2 C , and
let Bp D �"Ap 6 SL3.Z/ �

L
q2D Aq . Then there exists a possibly trivial finite subgroup Np E Ap such that

Bp Š Ap=Np Š Ap . Also note that Bp \ ker' is trivial, and hence Ep D '"Bp Š Ap . Finally, note thath
Ep W Ep \

M
q2D

Aq

i
�

h
F �

M
q2D

Aq W
M
q2D

Aq

i
D jF j < ℵ0

Thus Ep \
L
q2D Aq Š Ap . In particular, there is an element of order p, meaning p 2 D and thus C � D. a

Now we want to show Theorem 6 • 26. Doing this isn’t so simple as with Theorem 6 • 25. The proof of it makes use of
the following group theoretic concept and fact.

6 • 29. Definition
The groups G,H are isomorphic up to finite kernels iff there exist finite normal subgroups N E G,M E H such
that G=N Š H=M .

6 • 30. Theorem (Group Theoretic Fact)

There exists a Borel family ¹Sx W x 2 2Nº of finitely generated groups such that if Gx D SL3.Z/ � Sx , then for
all x ¤ y,

(i) Gx , Gy are not isomorphic up to finite kernels; and
(ii) Gx doesn’t virtually embed in Gy .

(i) is only used in showing the nonessentially free part, and (ii) is only used in showing the Borel bireducibility part.

Proof of Theorem 6 • 26 .:.
Using the Gxs from Group Theoretic Fact (6 • 30), for each Borel subset A � 2N , let EA D

F
x2AEGx

be the
smooth disjoint union of ¹EGx

W x 2 Aº, i.e. EA is the countable Borel equivalence relation on the standard
Borel space XA D ¹hx; f i W x 2 A; f 2 .2/Gx º defined by hx; f i EA hx0; f 0i iff x D x0 ^ f EGx

f 0.

Claim 1

If A � 2N is an uncountable Borel subset, then EA isn’t essentially free.

Proof .:.
Suppose EA 6B E

Y
H , where G Õ Y is a free Borel action of a countable group H . Then for each x 2 A,

EGx
6B EYH , just by restricting to each piece. This allows us to use Black Box (6 • 20), and so there

exists a virtual embedding �x W Gx ! H . Since A is uncountable, and each Gx is finitely generated (H
has only countably many finitely generated subgroups), there exist x ¤ y such that �x.Gx/ D �y.Gy/,
contradicting that Gx , Gy aren’t isomorphic up to finite kernels. a

Claim 2
EA 6B EB iff A � B .
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Proof .:.
Clearly if A � B then EA 6B EB . So suppose EA 6B EB and there exists an x 2 A nB . Then there exists
a Borel reduction f W .2/Gx !

F
y2B.2/

Gy from EGx
to EB . Since Gx Õ ..2/Gx ; �x/ is ergodic, there

exists Z � .2/Gx with �x.Z/ D 1 such that f "Z � .2/Gy for some fixed y 2 B . But then f �Z yields a
�xnontrivial Borel homomorphism from EGx

to EGy
. (Everything outside of Z, we can send to a single

element.) And so by Black Box (6 • 20), Gx virtually embeds in Gy , which is a contradiction a

a

Finally we sketch the proof of Group Theoretic Fact (6 • 30).

Proof sketch of Group Theoretic Fact (6 • 30) .:.

6 • 31. Definition
An infinite group G is quasifinite iff every proper subgroup of G is finite.

6 • 32. Theorem (Ol'shanskii)

Let P be the standard Borel space of strictly increasing sequences of primes x D hpn W n 2 !i such
that p0 > 1075. Then there exixts a Borel family ¹Tx W x 2º of 2generator groups such that for each
x D hpn W n 2 !i

• Tx contains a cyclic subgroup of order pn for each n 2 !.
• Every proper subgroup of Tx is cyclic of order pn for some n 2 !.
• Tx is simple.

Provint the above theorem takes a huge amount of work, as Ol’shanskii’s book shows. Using this result, though,
Group Theoretic Fact (6 • 30) follows from the following.

6 • 33. Proposition

For each x 2 P , let Gx D SL3.Z/ � Tx . Then the Borel family ¹Gx W x 2 P º satisfies that if x ¤ y, then
• Gx , Gy are not isomorphic up to finite kernels; and
• Gx doesn’t virtually embed in Gy .

Proof .:.
Since each Tx is simple and SL3.Z/ has no nontrivial, finite, normal subgroups; it follows that Gx has no
nontrivial, finite, normal subgroups. Thus it is enough to show that if x ¤ y, thenGx doesn’t embed inGy .
Suppose that � W Gx ! Gy is an embedding. Certainly � isn’t an isomorphism, since we have different
primes. In particular, �"Gx is an infinite, proper subgroup of Gy , which contradicts Ol’shanskii (6 • 32), as
they are all quasifinite. a

§6A. The Black Box

Now we should attempt to understand why Black Box (6 • 20) is true. To do this, we will need to introduce cocycles.
Until further notice, let G Õ hX;�i be a Borel action of a countable group G on a standard Borel space X with
Ginvariant probability measure �.

6A • 1. Definition
If H is a countable group, then a Borel map ˛ W G � X ! H is a cocycle iff for all g; h 2 G, ˛.hg; x/ D
˛.h; g � x/˛.g; x/ for �almost every x 2 X .

These are somewhat disgusting, but the theme will be to make these less disgusting, and Popa says you can.

To explain where these come from, cocycles arise naturally as follows. Suppose H Õ Y is a free Borel action of a
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countable group H and that f W X ! Y is a Borel homomorphism from EXG to EYH . Then we can define a Borel
cocycle ˛ W G �X ! H by

˛.g; x/ D the unique h 2 H such that h � f .x/ D f .g � x/.
SinceH Õ Y is free, this is how we get uniqueness, as per the following diagram: f .x/ must be in the same orbit as
f .gx/ via ˛.g; x/. f .gx/ must be in the same orbit as f .hgx/ iva ˛.h; gx/. And so f .x/ must be in the same orbit
as f .hgx/ via ˛.hg; x/.

X Y

x

g � x

hg � x

g

h

hg

f .x/

f .g � x/

f .hg � x/

˛.g; x/

˛.h; g � x/

˛.hg; x/

We are lucky that the following holds. If ˛.g; x/ D ˛.g/ depends only on the g variable, then the cocycle identity
reduces to ˛.hg/ D ˛.h/˛.g/, meaning ˛ W G ! H is a group homomorphism. Also, in this case using the same
setup as the above example, if we look at .G;X/ ! .H; Y / using ˛ and f , we get that ˛.g/f .x/ D f .gx/ is a
homomorphism of permutation groups. So if we can take a function and perturb it to get a function of one variable,
then we are in good shape: not only is there a group homomorphism in play, but there’s one that respects the group
actions. So we’ll try to eliminate variables.

Quesetion: can we “adjust” f W X ! Y so that ˛ becomes a group homomorphism? (And what does this “adjusting”
mean?)

Suppose that b W X ! H is a Borel map. Then we can define f 0 W X ! Y by f 0.x/ D b.x/f .x/ 2 Hf.x/. Then f 0

is also a Borel homomorphism from EXG to EYH (we haven’t changed the orbit). If f is a Borel reduction, then so is
f 0. Similarly, if f is �nontrivial, then so is f 0. Let ˇ W G �X ! H be the Borel cocycle corresponding to f 0.

X Y

x

g � x

g

f .x/ b.x/ f 0.x/

˛.g; x/

f .g � x/

b.g � x/

f 0.g � x/

ˇ.g; x/

Thus ˇ.g; x/ D b.gx/˛.g; x/b.x/�1. This motivates the following definition.

6A • 2. Definition
The cocycles ˛; ˇ W G � X ! H are equivalent, written ˛ � ˇ, iff there exists a borel b W X ! H such that for
all g 2 G,

ˇ.g; x/ D b.gx/˛.g; x/b.x/�1

for �almost every x 2 X .
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6A • 3. Theorem (Popa Superrigidity)

Let� be a countable infinite Kazhdan group (defined later) and letG;K be countable groups such that� E G 6 K.
Therefore, If H is any countable group, then every Borel cocycle ˛ W G � .2/K ! H is equivalent to a group
homomorphism from G intoH .

In most applications, G D K, and so we have a cocycle ˛ W G � .2/G ! H and the corresponding orbit equivalence
relation is EG . In many (not all, e.g. Black Box (6 • 20)) applications, � D G as well.

6A • 4. Definition
Let � be a countable group. Then � is a Kazhdan group iff there exists a finite subset F � � and " > 0 such that
the following holds.
(*) If � W � ! U.H / is any unitary representation such that there is a unit vector v 2 H with k�./v�vk < "

for all  2 F ,
then there exists a �invariant unit vector v 2 H .

Note that every countable Kazhdan group is finitely generated, and we can let F be any finitely generating set. Fur
thermore, any homomorphic image of a Kazhdan group is Kazhdan.

6A • 5. Example

SLn.Z/ is Kazhdan for all n � 3.

Recall Black Box (6 • 20), restated below. We now are in a position to prove it.

6A • 6. Theorem (The Black Box)

Let S be any countable group and let G D SL3.Z/ � S . Let H be any countable group and let H Õ Y be a free
Borel action. If there exists a �nontrivial Borem homomorphism f W X ! Y from EG to EYH , then there exists
a virtual embedding � W G ! H .

Proof .:.
Suppose that f W X ! Y is a �nontrivial Borel homomorphism from EG to EYH . Then we can define a Borel
cocycle ˛ W G � .2/G ! H by taking ˛.g; x/ to be the unique h 2 H such that hf .x/ D f .hx/. By Popa
Superrigidity (6A • 3), there exists a Borel map b W .2/G ! H , a group homomorphism ' W G ! H and a
subset X � .2/G with �.X/ D 1 such that for all g 2 G, '.g/ D b.gx/˛.g; x/b.x/�1 for all x 2 X .

So let f 0 W X ! Y be the borel map f 0.x/ D b.x/f .x/. Then f 0 is also a �nontrivial Borel homomorphism
from EG to EYH . Also for all g 2 G and x 2 X ,

f 0.gx/ D b.gx/f .gx/ D b.gx/˛.g; x/f .x/ D b.gx/˛.g; x/b.x/�1f 0.x/ D '.g/f 0.x/. (**)
To see that ' is a virtual embedding, suppose that N D ker' is infinite. By (**), for all g 2 N and x 2 X ,
f 0.gx/ D f 0.x/. Thus f 0 W X ! Y is N invariant. Since G Õ hX;�i is strongly mixing, N Õ hX;�i is
ergodic; and so there exists a Z � X with �.Z/ D 1 such that f 0 sends Z to a single point y0 2 Y . But then f
sends Z into the single EYH class containing y0 (we’ve only adjusted within the same class), which contradicts
the fact that f is �nontrivial. a

The next application uses the following definition.

6A • 7. Definition
Let E be a Borel equivalence relation on a standard Borel space X and let 1 � n � !. Then nE D E ˚ � � � ˚ E
(n times) is the Borel equivalence relation on X � n defined by

hi; xi nE hj; yi iff i D j ^ x E y

Clearly nE 6B mE for n � m. But it’s difficult to show that E D 1E <B 2E is possible.
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6A • 8. Theorem
There exists a countable Borel equivalence relation E such that

E <B E ˚E <B E ˚E ˚E <B � � � <B nE <B � � � <B !E.

Proof .:.
We require two more facts.

Fact 1a. SL3.Z/ has no nontrivial, finite, normal subgroups.
Fact 1b. If � W SL3.Z/! SL3.Z/ is an injective homomorphism, then � is surjective; i.e. SL3.Z/ is coHopfian.

As a corollary, if � W SL3.Z/! SL3.Z/ is a virtual embedding, then � is an automorphism.

Fact 2. Suppose G is a countable group and hX;�i is a standard Borel Gspace with invariant probability
measure �. If � is ergodic, then there exists a Ginvariant, Borel subset X0 � X with �.X0/ D 1 such
that G Õ X0 is uniquely ergodic (with unique invariant probability measure ��X0).

So let G D SL3.Z/ and let X � .2/G be a Ginvariant Borel subset with �.X/ D 1 such that G Õ hX;�i

is uniquely ergodic. Let E D EXG . Then clearly E 6B E ˚ E 6B � � �. So we want to show that there are no
reductions holding in the opposite direction.

Claim 1
If f W X ! X is a �nontrivial Borel homomorphism from E to E, then �.G � f "X/ D 1.

Assuming the claim, suppose ' W X � .nC 1/ ! X � n is a Borel reduction from .nC 1/E to nE. For each
0 � i � n, let Xi D X � ¹iº; and for each 0 � j � n, let 'j D '�Xj . Since G Õ hX;�i ergodically, and
each is isomorphic to hX;�i, for each 0 � j � n, there exists 0 � kj � n � 1 and Zj � Xj ; with measure
�.Zj / D 1 such that 'n"Zj � Xkj

. By the claim, �.G � f "Zj / D 1.

There exist by the pigeonhole principle i ¤ j with ki D kj . But then
�.G � f "Zi \G � f "Zj / D 1,

and so G � f "Zi \ G � f "Zj ¤ ;, which is a contradiction: elements which are nonequivalent going into the
same class. a

So all that remains to show is the claim. To do this, we make use of some basic observations in measure theory.

6A • 9. Observation
If hX;�i is a standard Borel probability space and f W X ! Y is a Borel map, then we can define a probability
measure � D f � � defined by �.A/ D �.f �1"A/.

6A • 10. Observation
With the above hypotheses, suppose G Õ hX;�i is a measurepreserving Borel action, H Õ Y is a Borel action
and ' W G ! H is a group homomorphism such that '.g/f .x/ D f .gx/. Then � D f � � is '.G/invariant.

Proof .:.
Let A � Y be Borel and g 2 G. Let B D f �1"A. Then f .gB/ D '.g/f .B/ D '.g/A. Hence �.'.g/A/ D
�.gB/. Since � is Ginvariant, �.gB/ D �.B/ D �.A/. a

Using these observations with Popa Superrigidity (6A • 3) gives this result easily.

6A • 11. Result
With X , G, and E as in the proof of Theorem 6A • 8, if f W X ! X is a �nontrivial Borel homomorphism from
E to E, then �.G � f "X/ D 1.
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Proof .:.
Suppose f W X ! X is a �nontrivial Borel homomorphism from E to E. Then we can define a Borel cocycle
˛ W G � X ! G by taking ˛.g; x/ to be the unique h 2 G such that hf .x/ D f .gx/. Now we want to adjust
this to become a homomorphism. Since G is Kazhdan, by Popa Superrigidity (6A • 3), there exists a Borel map
b W X ! G, a group homomorphism ' W G ! G, and a Borel subset Z � Z with �.Z/ D 1 such that—letting
f 0.x/ D b.x/f .x/—for all g 2 G, and x 2 Z, f 0.gx/ D '.g/f 0.x/ (so we are unravelling the cocyle to get
the homomorphism). Furthermore, we can suppose that Z is Ginvariant (otherwise we take the intersection of
all of the translates). Note that G Õ hZ;�i is (still) strongly mixing.

Claim 1
' is a virtual embedding.

Proof .:.
Suppose N D ker' is infinite. Since G Õ hZ;�i is strongly mixing, N Õ hZ;�i is ergodic. Since
f 0 W Z ! X is N invariant, it follows that f 0 is �almost everywhere constant. But this means �almost
every x 2 Z is sent by f to a single Eclass, a contradiction with �nontriviality. a

Thus ' W G ! G is an automorphism. Let � D f 0 � � be the probability measure on X defined by �.A/ D
�.f 0�1"A/.

Since f 0.gx/ D '.g/f 0.x/, it follows that � is '.G/invariant. But '.G/ D G, so � is Ginvariant. Since
G Õ hX;�i is uniquely ergodic, it follows that � D �. Thus �.f 0".Z// D �.f 0"Z/ which, by definition of the
pushforward, is just �.Z/ D 1. Since f 0"Z � G � f "X , we have that �.G � f .x// D 1. a

§6B. Weak Borel reductions

6B • 1. Definition
Suppose that E;F are countable Borel equivalence relations on X; Y . Then E is weakly Borel reducible to F ,
written E 6w

B F , iff there exists a countabletoone Borel homomorphism f W X ! Y from E to F .

We remark the following about this definition.
1. If f is a Borel reduction, then f is a weak Borel reduction.
2. If E 6w

B E
0 and E 0 6w

B E
00, then E 6w

B E
00.

3. If E � F are countable Borel equivalence relations on X , then idX is a weak Borel reduction from E to F .
In essence, this is all that weakly Borel reductions are: Borel maps with inclusions.

6B • 2. Theorem
If E, F are countable Borel equivalence relations on X , Y , then the following are equivalent:

(i) E 6w
B F ;

(ii) There exists a countable Borel equivalence relationR � E on X such that R 6B F .

Proof .:.
For (ii) implies (i), we have that E 6w

B R and R 6B F . Hence E 6w
B F . For the other direction, suppose

f W X ! Y is a weak Borel reduction from E to F . Let R D f �1.F /. Then R � E is a countable Borel
equivalence relation and f is a Borel reduction from R to F . a

So we explore the connection between 6w
B and 6B.

6B • 3. Definition
A countable Borel equivalence relation E is weakly smooth iff there is a smooth, countable, Borel F such that
E 6w

B F .

We clearly have that all smooth Borel equivalence relations are weakly smooth, but we also have the reverse.
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6B • 4. Theorem
A countable Borel equivalence relation E is smooth iff it is weakly smooth.

Proof .:.
Let E be weakly smooth on X , and let F be a smooth countable Borel equivalence relation such that E 6w

B F .
Then there exists a countable Borel R � E on X such that R 6B F . Thus R is smooth.

Hence there exists a Borel transversal T for R. By Feldman–Moore Theorem (2 • 2), there exists a countable
group G D ¹gn W n 2 !º and a Borel actionG Õ X such that R D EXG . Hence we can define a Borel selector
s W X ! X for E by s.x/ D gn � t where T \ Œx�R D ¹tº and n is minimal such that gn � t E x.

Thus E has a selector and so is also smooth. a

6B • 5. Definition
A countable Borel equivalence relation E is weakly hyperfinite iff there is a hyperfinite, countable, Borel F such
that E 6w

B F .

Again, we have the same characterization as before.

6B • 6. Theorem
If E is a weakly hyperfinite Borel equivalence relation on X , then E is hyperfinite.

Proof .:.
Let F be a hyperfinite, Borel equivalence relation such thatE 6w

B F . Then there exists a countable BorelR � E
on X such that R 6B F . Hence R is hyperfinite, and thus E is too. a

So for idX , there’s no difference between 6B and 6w
B . Similarly, there’s no difference for E0.

6B • 7. Theorem
A countable Borel equivalence relationE is weakly universal iff for every countable Borel equivalence relation F ,
F 6w

B E; equivalently E1 6w
B E.

This yields to the following conjecture from 2001.

6B • 8. Open Problem (Hjorth's Conjecture)

Every weakly universal countable Borel equivalence relation is universal.

After this, we arise atThomas’ question in the early 2000s: do there exist countable Borel equivalence relationsE � F
such that E 66B F ? It turns out that there are.

6B • 9. Theorem
There exist countable Borel equivalence relations E, F on a standard Borel X such that E � F and E 66B F .

Hence 6B and 6w
B are in fact distinct notions. In proving this, as usual, the point is to find/Google suitable “big guns”.

6B • 10. Theorem
Suppose that G is a proper subgroup of finite index in SL3.Z/. Therefore,

1. G is a Kazhdan group.
2. G has no nontrivial, finite normal subgroups.
3. SL3.Z/ does not embed in G.

6B • 11. Theorem
Suppose H Õ hX;�i is a strongly mixing, Borel action on a standard Borel probability space. Then there exists
an H invariant Borel subset X0 � X with �.X0/ D 1 such that the action of every infinite, finitely generated
subgroup ofH is uniquely ergodic.
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Proof of Theorem 6B • 9 .:.
Let S D SL3.Z/ and let T D ker' where ' W SL3.Z/ ! SL3.F7/ acts surjectively and where F7 is the field
with 7 elements (the ‘7’ is unimportant, we just want a finite index). Then 1 < ŒS W T � < ℵ0. It follows that T is
also finitely generated. Note that T is also a Kazhdan group.

Let X � .2/S be an S invariant Borel subset with �.X/ D 1 such that the action of every infinite, finitely
generated subgroup of S on X is uniquely ergodic. Let E ¨ F be the orbit equivalence relations of T Õ X and
S Õ X . We will show that E 66B F .

Suppose that f W X ! X is a Borel reduction from E to F . Then we can define a Borel cocycle ˛ W T �X ! S

by taking ˛.t; x/ to be the unique s 2 S such that sf .x/ D f .tx/. By Popa Superrigidity (6A • 3), since T � S
is Kazhdan, after deleting �null subset and adjusting f if necessary, we can suppose that ˛ W T ! S is a group
homomorphism.

Claim 1
˛ W T ! S is an embedding.

Proof .:.
Suppose not. Since ŒSL3.Z/ W T � < ℵ0, T has non nontrivial, finite, normal subgroups. ThusN D ker˛ is
infinite. Since S Õ h.2/S ; �i is strongly mixing, N Õ hX;�i is ergodic. But then the N invariant Borel
map f W X ! X is �almost everywhere constant, contradicting that we have a Borel reduction. a

Also, since T 6Š S , it follows that ˛"T is a proper subgroup of S . Since the actions of S , T on hX;�i are free and
˛.t/f .x/ D f .tx/ for t 2 T , x 2 X , it follows that f W X ! X is an injection. Thus we have an embedding of
permutation groups: hT;Xi

˛;f
��! hS;Xi. We more or less want f to be surjective, and to do this, we use unique

ergodicity.

Hence we can define an ˛"T invariant probability measure � D f � � on X by �.A/ D �.f �1"A/. Since
˛"T is finitely generated and infinite, ˛"T Õ hX;�i is uniquely ergodic. Thus � D � and hence �.f "X/ D
�.f "X/ D �.f �1".f "X// D �.X/ D 1. So the map is onto.

As a proper subgroup of S , let s 2 S n ˛"T . Then �.f "X \ s.f "X// D 1. Hence there exist x; y 2 X such
that f .x/ D sf .y/ 2 f "X \ s.f "X/. Thus f .x/ F f .y/ and so x E y. Hence there exists a t 2 T such that
x D ty. It follows that ˛.t/f .y/ D f .ty/ D f .x/ D sf .y/. But then s�1˛.t/f .y/ D f .y/, which contradicts
the fact that S Õ X is free. a

So that was the last consequence of Popa Superrigidity (6A • 3) we will look at.

6B • 12. Theorem (Miller)

If E is a countable, Borel equivalence relation on a standard Borel space X , then the following are equivalent.
(i) There is a universal countable Borel F on X such that F � E.
(ii) E is weakly universal.

Proof .:.
Showing (i) implying (ii) is easy, but (ii) implying (i) is very technical and never used. a

6B • 13. Corollary

�T is weakly universal.

Proof .:.
Let F D ha; bi be the free group on two generators. Then E1 is the orbit equivalence relation of the shift action
F2 Õ 2F2 . We can identify the left translation action F2 Õ F2 with the action � Õ N of a suitable group of
recursive permutations. With this identification, E1 � �T. a

30



§7 MATH 569 CLASS NOTES

For later use, we record the following.

6B • 14. Theorem
If E is a weakly universal, countable Borel equivalence relation, then E isn’t essentially free.

Proof .:.
Otherwise, we can suppose that E D EYH for some free Borel action H Õ Y . But then there exists a countable
G such that there’s no �nontrivial Borel homomorphism from EG to E D EYH . And in this case, EG 66w

B E. a

6B • 15. Open Problem

Is�T countable universal?

For a more vague open problem, we have the following.

6B • 16. Open Problem

Is there a “natural” action � Õ 2N of a countable group such that E2N

� is�T?

We next try to develop an analog of ergodicity for�T.

Section 7. Martin's Measure

Recall the following definition.

7 • 1. Definition

For each r 2 2N , the corresponding cone is C D ¹s 2 2N W r 6T sº.

Note that if ¹Cn W n 2 !º is a countable set of cones, then
T
n<! Cn contains a cone. The following can be regarded

as the analogue of ergodicity for�T. We have the following theorem due to Martin.

7 • 2. Theorem (Martin's Theorem)

If X � 2N is a�Tinvariant Borel subset, then either X contains a cone, or 2N nX contains a cone.

As a remark,X is�Tinvariant iff whenever y �T x 2 X , then y 2 X . Before we prove this (fromBorel determinacy),
we state a few corollaries.

7 • 3. Corollary

If ' W 2N ! 2N is a �Tinvariant Borel map, then there exists a cone C � 2N such that '�C is a constant map.

Proof .:.
For each n 2 !, there exists an "n 2 ¹0; 1º such that Xn D ¹x 2 2Z W '.x/n D "nº contains a cone Cn. Then
C D

T
n2! Cn contains a cone and '�C is a constant function. a

7 • 4. Corollary

If X � 2N is a�Tinvariant Borel subset, then the following are equivalent.
1. X contains a cone.
2. X is a 6Tcofinal.

Proof .:.
(1) implies (2) obviously. For (2) implies (1), clearly 2N nX cannot contain a cone. a
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Proof of Martin’s Theorem (7 • 2) .:.
SupposeX is a�Tinvariant Borel subset of 2N . Consider the 2 player gameGX where I wins iff hsn W n 2 !i 2
X (here I plays s2n 2 ¹0; 1º, and II plays s2nC 2 ¹0; 1º for n < !). Suppose, for example, that I has a winning
strategy � W 2<N ! 2. onsider the cone C D ¹t 2 2N W � 6T tº. We claim that C � X .

Let t D htn W n < !i 2 C . Consider the play of GX , where
• II plays s1; s3; s5; � � �, where t D hs2nC1 W n < !i;
• I uses � and plays s0; s2; � � �.

Then s D hsn W n 2 !i 2 X as � is a winning strategy. Clearly t 6T s. Also, since � 6T t , s 6T t . Thus
t 6T s 2 X , and so t 2 X . a

We will explore some consequences of Martin’s Conjecture (MC).

7 • 5. Open Problem (Martin's Conjecture)

If f W 2N ! 2Z is a Borel homomorphism from�T to�T, then exactly one of the following holds:
1. There exists a cone C � 2N such that f maps C into a single�Tclass.
2. There exists a cone C � 2N such that x 6T f .x/ for all x 2 C .

There is a stronger version (namely, the actual version), where (2) is replaced by
2’. There exists a cone C � 2N and a countable ˛ < !1 such that f .x/ �T x

.˛/ for all x 2 C , where x.˛/ is the
˛th Turing jumnp.

Since the 1980s, there’s been a single instance of progress on MC. Namely, the following theorem, proven some time
in the 80s.

7 • 6. Theorem (Slaman–Steel)

Suppose that f W 2N ! 2N is a Borel homomorphism from �T to �T. If there exists a C � 2N such that
f .x/ <T x for all x 2 C , then there exists a coneD � C such that f sendsD to a single�Tclass.

Combining Martin’s Theorem (7 • 2) and Slaman–Steel (7 • 6), if f W 2N ! 2N is a counterexample to MC, then there
exists a cone C such that f .x/ and x aren’t 6Tcomparable for all x 2 C .

7 • 7. Theorem

(MC) If f W 2N ! 2N is a Borel homomorphism from�T to�T, then exactly one of the following holds:
i. There exists a cone C such that f maps C to a single�Tclass.
ii. There exists a cone C such that f �C is a weak Borel reduction from�T�C to�T. Furthermore, ifD � 2N

is any cone, then Œf "D��T
��D

S
d2DŒf .d/��T (the saturation of f ) contains a cone.

7 • 8. Corollary

(MC)�T <B �T ˚�T <B �T ˚�T ˚�T <B � � �.

Proof of Theorem 7 • 7 .:.
Suppose that (i) fails. ByMC, there exists a coneC such that x 6B f .x/ for all x 2 C . Clearly f �C is countable
to one (since there are only countably many predecessors to any turing degree). Hence f �C is a weak Borel
reduction from�T�C to�T.

Now we letD be any cone, and letD0 D C \D. Since f �C is countable to one, it follows that f "D0 is Borel.
Hence Œf "D0��T is also Borel. Since Œf "D0��T is a �Tinvariant, 6Tconfinal, Borel subset of 2N , Martin’s
Theorem (7 • 2) implies that Œf "D0��T contains a cone. a

As a matter of notation, for x; y 2 2N , then x˚y is the usual recursive join: x is placed on the evens while y is placed
on the odds.
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7 • 9. Corollary

(MC) If A � 2N is a �Tinvariant, Borel subset, then the following are equivalent.
1. �T�A is weakly universal.
2. A contains a cone.

Proof .:.
For (ii) ! (i), suppose that A contians the cone C D ¹r 2 2N W z 6T rº. We want to show that this is weakly
universal. We can define an injective, weak Borel reduction from�T to�T�A by x 7! x ˚ z.

For the other direction, suppose that �T�A is weakly universal. Let f W 2N ! A be a weak Borel reduction
from�T to�T�A. By Theorem 7 • 7, Œf "2N ��T � A contains a cone. a

Remark: there are currently no naturally occurring Borel sets of Turing degrees D for which it is known that �T�D
isn’t weakly universal. In particular, it is not known whenD is the set of minimal degrees.

7 • 10. Definition
LetE be a countable Borel equivalence relation on a standard Borel spaceX . Then�T isEmergodic iff for every
Borel homomorphism f W 2N ! X from�T to E, there exists a cone C such that f maps C to a single Eclass.

So by Martin’s Theorem (7 • 2),�T is id2N mergodic. One can also see that if E 6B F and�T is F mergodic, then
�T is Emergodic.

7 • 11. Open Problem

Is�T E0mergodic?

But assuming MC, we understand everything.

7 • 12. Theorem
(MC) If E is a countable Borel equivalence relation, then exactly one of the following holds:

a. E is weakly universal.
b. �T is Emergodic.

Proof .:.
If E is weakly universal, then there exists a weak reduction from�T to E; and so�T isn’t Emergodic. So (a)
and (b) are mutually exclusive.

So it suffices to show that if �T isn’t Emergodic, then E is weakly universal. So suppose the Borel map
f W 2N ! X witnesses the failure of (b): a nontrivial, Borel homomorphism from�T to E. Since�T is weakly
universal, there exists a weak Borel reduction g W X ! 2N from E to �T. Let h D g ı f . Then h is a Borel
homomorphism from�T to�T.

Suppose there exists a cone C � 2N such that h sends C to a single �T class, say Œx��T . Then f sends a cone
to the countable preimage of a single class: f maps C into the countable set Y D g�1"Œx��T . We’d like to have
the inverse image of one of the points is large, but this follows from the fact that there must be some y 2 Y with
f �1.y/ as 6Tcofinal. By Martin’s Theorem (7 • 2), it follows that Œf �1.y/��T contains a cone D. But then f
mapsD into Œy�E , a contradiction.

It follows that there exists a cone C such that h�C is countable to one. Thus f �C is countable to one, and f �C
is a weak Borel reduction from�T�C to E. Since�T�C is weakly universal, E is weakly universal. a

Finally, we give two striking applications of MC, which don’t mention �T. Recall Definition 4 • 23, that a Borel
equivalence relationE onX is BorelBounded iff every Borel ' W X ! NN has a Borel homomorphism � W X ! NZ

from E toD� (eventual equality) which dominates ' for all x: '.x/ 6� �.x/ for all x 2 X .

Also recall Open Problem 4 • 25, where it’s an open problem whether there exist any countable Borel equivalence
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relations that are not BorelBounded. MC answers the open problem by saying that any weakly universal one isn’t
BorelBounded.

7 • 13. Theorem
(MC) If E is weakly universal, then E is not BorelBounded.

Note that even assuming MC, nothing is known when E0 <B E isn’t weakly universal. The theorem, however, only
uses the fact that �T is E0mergodic under MC. So we’re not even using the full power of MC. We will first prove
the following special case.

7 • 14. Theorem
(MC)�T isn’t BorelBounded.

7 • 15. Lemma
D� isn’t weakly universal.

Proof .:.
It is easily seen thatD� is Borel bireducible with E0. Since E0 is free, E0 isn’t weakly niversal. a

Proof of Theorem 7 • 14 .:.
Identifying each r 2 2N with the corresponding subset of N, let ' W 2N ! 2N be the Borel map such that

• if r \ 2N is infinite, then '.r/ is the strictly increasing enumeration of r \ 2N;
• otherwise '.r/ is the identically zero function.

Now we claim the following.

Claim 1

For each h 2 NN , the �Tinvariant Borel set Sh D ¹r 2 2N W 9s 2 2N .s �T r ^ h < '.s//º contains a
cone.

Proof .:.
First fix a strictly increasing e 2 NZ such that h < e. Now suppose r 2 2Z satisfies e 6T r . Consider
s � N defined by

s D ¹2e.n/ W n 2 Nº [ ¹2`C 1 W ` 2 rº.
Then clearly s �T r , and h < e < '.s/. a

Finally, suppose that � W 2N ! NN is a Borel homomorphism from �T to D� such that '.s/ 6� �.s/ for all
s 2 2N . SinceD� isn’t weakly universal,�T is ��mergodic, and so there exists a cone C such that � maps C
to a singleD�class, say, Œh�D� . But this is a problem, because then '.s/ 6� h for all s 2 C and so C \Sh D ;,
which is a contradiction. a

To see that every weakly universal E isn’t BorelBounded from MC, we we prove the following lemma.
7 • 16. Lemma

Suppose E, F are countable Borel equivalence relations, and that E is BorelBounded. Therefore,
(i) If F 6B E, then F is BorelBounded.
(ii) If F � E, then F is BorelBounded.

Proof .:.
For (ii), suppose that F � E are equivalence relations on X . Let ' W X ! NN be any Borel map. Therefore
there exists a Borel homomorphism � W X ! NN from E to D� such that '.x/ 6� �.x/ for all x 2 X . So � is
also a Borel homomorphism from F toD�.

For (i), suppose f W X ! Y is a Borel reduction from F to E. Then Z D imf is a Borel subset of Y and there
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exists a Borel map g W Z ! X such that f ı g D id �Z.

Suppose that ' W X ! NN is Borel. Ideally, we’l like to consider the function g ı ' (and 0 elsewhere on Y ), but
this won’t work. Let � D ¹n W n 2 !º be a countable group with a Borel action � Õ X such that EX� D F by
Feldman–Moore Theorem (2 • 2). Let O' W Y ! NN be the Borel map defined by

O'.z/.n/ D

´
max¹'.ig.z// W i � nº if z 2 Z
0 otherwise.

And now we just check that this works. Let O� W Y ! NN be a Borel homomorphism from E to D� such that
O'.z/ 6� O�.z/ for all z 2 Y (since E is BorelBounded). Define � W X ! NZ by �.x/ D . O� ı f /.x/. Clearly �
is a Borel homomorphism from F toD�. Now we just check domination.

Fix some x 2 X and let z D f .x/ 2 Z. Then there exists an n 2 ! such that x D ng.z/. So if m satisfies
• m � n; and
• m � max¹` W O'.z/.`/ > O�.z/.`/º;

then
'.x/.m/ D '.ng.z//.m/ � O'.z/.m/ � O�.z/.m/ D O�.f .x//.m/ D �.x/.m/.

Thus '.x/ 6� �.x/ for all x 2 X . a

So the following theorem tells us that measure is useless near the top of the countable Borel equivalence relations.

7 • 17. Theorem
(MC) Let E be a countable Borel equivalence relation on a standard Borel space X and let � be a (not necessarily
Einvariant) probability measure on X . Then there exists a Borel Y � X with �.Y / D 1 such that E�Y isn’t
weakly universal.

We will make use of the following consequence of Borel–Cantelli (4 • 21).

7 • 18. Lemma

If hX;�i is a standard Borel probability space and � W X ! NN is Borel, then there exists an h 2 NN such that
�.¹x 2 X W �.x/ 6� hº/ D 1.

Proof .:.
Let ' W 2N ! NN be the Borel map such that

• if r \ 2N is infinite, then '.r/ is the strictly increasing enumeration of r \ 2N; and
• otherwise, '.r/ is identically 0.

By Feldman–MooreTheorem (2 • 2), there exists a countable group� D ¹n W n 2 !º and a Borel action� Õ 2N

such that E2N

� is�T. Let  W 2N ! NN be the Borel map defined by
 .x/.n/ D max¹'.nx/ W m � nº.

Then for all r; s 2 2N with s �T r , '.s/ 6�  .r/.

Let f W X ! 2N be a weak Borel reduction from E to �T. Define � W X ! NN by �.x/ D  .f .x//. Then
there exists an h 2 NN such that Y D ¹x 2 X W �.x/ 6� hº satisfies that �.Y / D 1 by Borel–Cantelli (4 • 21).

Let Z D Œf .x/��T . Therefore Z is Borel as f is countabletoone, and saturation is Borel. Moreover, for each
r 2 Z, '.s/ 6� h for all s �T r . By an earlier claim, there exists a cone C � 2N nZ. Hence Z doesn’t contain
a cone. By MC,�T�Z isn’t weakly universal. Since E 6w

B �T�Z, it follows that E isn’t weakly universal. a

Now return to consequences ZFC, where the remainder of the course takes place.

§7A. Actual Theorems of ZFC
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7A • 1. Definition
f E, F are Borel equivalence relations on Polish spaces X , Y ; write E 6c F iff there exists a continuous (in the
sense of X and Y ) reduction from E to F .

A problem of Kanovei is to find nontivial instances of countable Borel equivalence relations E, F such that E 6B F

and E 66c F . What we mean by trivial is given by the following example.

7A • 2. Example (Trivial Example)

Consider idŒ0;1� and id2N . Then idŒ0;1� 6B id2N , but idŒ0;1� 66c id2N , just because of topological reasons.

Now in descriptive set theory, almost every equivalence relation is on a totally disconnected space.

7A • 3. Theorem (Target Theorem 4)

�T 66c E1.

7A • 4. Definition

et�1 be the relation of recursive isomorphism on 2N (regarded as P .N/; i.e. if x; y 2 2Z, then
x �1 y iff there is a recursive permutation of N such that '"x D y.

7A • 5. Theorem (Folklore Theorem)

The map x 7! x0 is a Borel reduction from�T to�1.

Note that the following theorem implies that the above map is not continuous (as we will see later).

7A • 6. Theorem (Target Theorem 5)

�T 66c �1.

It is an open problem whether �1 is universal. However, let Rec.N/ be the group of recursive permutations of N.
Marks has shown that E3N

Rec.N/ is universal (the question is then why we can’t with E
2N

Rec.N/).

Both Target Theorem 4 (7A • 3) and Target Theorem 5 (7A • 6) are immediate consequences of the following.

7A • 7. Theorem (Theorem AA)

SupposeG is a group of recursive permutations of N andE D E2N

G . Then whenever � W 2N ! 2N is a continuous
homomorphism from�T to E, then there exists a cone C � 2N such that � maps C into a single Eclass.

This is more generally true whenG 6 Sym.N/ is any countable subgroup. The proof just gets more technical, and less
transparent.

7A • 8. Theorem

If f W 2N ! 2N , then the following are equivalent:
i. f is continuous.
ii. There exist e 2 N and z 2 2N such that f .x/ D 'z˚x

e for all x 2 2N .

To introduce some notation, 'e is the eth oracle Turingmachine. If r 2 2N , then 'r=e is the (partial) function computed
by 'e with oracle r .

Before proving it, we have the following corollary.

7A • 9. Corollary

If f W 2N ! 2N is continuous, then there exists a cone C � 2N such that f .x/ 6T x for all x 2 C .
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Proof of Theorem 7A • 8 .:.
To show that (ii) implies (i), suppose that f .x/ D y. We need to show that if you’re close to x, then you’re close
to y. In particular, for n 2 N, there exists an m 2 N such that x0�m D x�m, then (because we’re only using
finitely many values from the oracle)

f .x0/�n D 'z˚x0
e �n D 'z˚x

e �n D f .x/�n.
Then f is continuous.

Now suppose f W 2N ! 2N is continuous. Let
z D ¹h�; �i 2 2<N

� 2<N
W f �1"U� � U�º

(here the U� s re basic open sets). Since f is continuous, for all x 2 2N , if f .x/ D y, then for all n 2 Z, there
exists an m 2 N such that hx�m; y�ni 2 Z. Thus y is computable from z ˚ x as follows.

Given ` 2 N, we search through z; x until we find h�; �i 2 z such that � � x and j� j > `. Then y.`/ D �.`/.a

The following definition is deceptively disgusting, but it is the proper notion to prove Theorem AA (7A • 7).

7A • 10. Definition

If T � 2<N is a tree, then ŒT � � 2N is the set of infinite branches.
A tree T � 2<N is perfect iff every t 2 T has incompatible extensions.
A tree T � 2<N is pointed iff T is perfect and T 6T x for every x 2 ŒT �.

For example, T D 2<N is clearly pointed, and so is every other recursive tree. Why do we care about such trees? Well,
observe the following

7A • 11. Result

If T � 2<N is pointed, then for every T 6T z 2 2
N , there exists x 2 ŒT � such that x �T z.

Proof .:.
For each T 6T z 2 2

N , let xz 2 ŒT � be the branch which goes “left” at the nth branching point iff z D 0. Then
T 6T xz and so z 6T xz (just by checking the path you take with respect to T , which xz also computes). Also,
since T 6T z, we have that xz 6T z and thus xz 6T z. a

Thus, if T is a pointed tree, then ŒT � is a “natural example” of a Borel set which contains a complete section of a
cone. Now due to Martin, we have the following which gives examples of pointed trees. Note that this relies on Borel
determinacy.

7A • 12. Theorem

If A � 2N is a 6Tcofinal Borel subset, then there exists a pointed tree T � 2<N such that ŒT � � A.

Proof .:.
Consider the game where I and II alternate. I plays x.0/ then II plays y.0/, and then I plays x.1/, and so on: each
turn I plays x.n/ and II plays y.n/ where x.n/; y.n/ 2 ¹0; 1º. Here, II wins iff y 2 A and x 6T y. Using Borel
determinacy, we have the following.

Claim 1
IIhas a winning strategy.

Proof .:.
If not, then by Borel determinacy, I has a winning strategy � W 2<N ! 2. But then II can play any
� 6T y 2 A. And then x D � �y 6T y and so II wins this play, contradicting that � is a winning strategy.a

Let � W 2<N ! 2 be a winning strategy for II. Let O� 2 2N be such that O� �T � . For each u 2 2<N [ 2Z (as an
abuse of notation) let � � u be the corresponding play of II using � .
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For u 2 2<N [ 2N and x 2 2N , say that the even part of u agrees with x if u.2i/ D x.i/ for all 2i < juj.

We first define a perfect binary tree T1 � 2<N as follows. This tree will not be pointed, but when we look at the
responses of II to plays in T1, this will be the tree we’re after.

• Let u; D ;.
• Next, let u.0/, u.1/ be the lexicographically least binary sequences whose even parts agree with O� such that
� � u.0/ and � � u.1/ are incompatible.

To see that u.0/ and u.1/ exist, note that if x 2 2Z then x 6T � � x and so the map x 7! � � x isn’t constant on
any 6Tunbounded set of reals, and so it must eventually split into some u.0/ and u.1/.

• Next, let u.00/ and u.01/ be the lexicographically least extensions of u.0/ whose even parts agree with O�
such that � � u.00/, � � u.01/ are incompatible.

• And continue in this fashion to create a binary tree.
Define

T1 D ¹s 2 2
<N
W 9t 2 2<N.s � ut /º, and

T D ¹� � u W u 2 T1º.
Clearly T is a perfect binary tree by construction. Moreover, every branch of T is in A, since � is a winning
strategy for II: ŒT � � A. Also, T 6T � as � was all that was used in the construction. Suppose that y 2 ŒT �. We
have to show that T 6T y. One can see that y D � �x for some x 2 ŒT1�. So the even part of y agrees with O� and
hence � 6T x. But since � is winning for II, we have that x 6T � �x D y, and so T 6T � 6T x 6T � �x 6T y,
meaning T is pointed. a

When we apply this theorem, we have something unbounded, and a pointed tree inside it But sometimes we want an
“intelligent” pointed tree, which can do something for us in a proof. So now we show that we can do this.

7A • 13. Result

If T � 2<N is a pointed tree, and T 6T z 2 2
N , then there exists a pointed subtree T0 � T such that T0 �T z.

Proof .:.
Let T0 be the subtree such that at each 2nth branching point, we always go left if z.n/ D 0, and always go right
if z.n/ D 1. Then clearly T0 6T z. Let y 2 ŒT0� be the leftmost branch. Then y 6T T0; and since y 2 ŒT �, it
follows that T 6T y and therefore T 6T T0. And it follows that z 6T T0 just by looking at what happens at the
even levels compared to T . Therefore T0 �T z. Finally, suppose that x 2 ŒT0� � ŒT �. Therefore T 6T x, and so
by the same idea (considering the even branching points compared to T ), z 6T x and therefore T0 6T x. a

So just by refining the pointed tree given by Theorem 7A • 12, we can get as complicated a pointed tree as we’d like.

7A • 14. Definition
If E � F are Borel equivalence relations on X , then F is smooth over E iff there exists a Borel homomorphism
� W X ! X from F to E such that �.x/ F x for all x 2 X . (This implies � is a Borel reduction from F to E).

In the proof of Theorem AA (7A • 7), we will use the following. (For example,�1��T.)

7A • 15. Theorem (Theorem BB)

IfH 6 Sym.N/ is any countable subgroup andD � 2N is a cone such thatE2N

H �D � �T �D. Therefore�T�D
isn’t smooth over E2N

H �D.

Proving this is where pointed trees will come into play. But assuming this theorem, we can proveTheoremAA (7A • 7).

Proof of Theorem AA (7 A • 7) .:.
Suppose G 6 Sym.N/ is a group of recursive permutations and � W 2Z ! 2N is a continuous homomorphism
from�T to E2N

G . Since E2N

G � �T, we can also regard � as a homomorphism from�T to�T.
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Since � is continuous, � is computable on a cone. Explicitly, there exists a cone C � 2Z such that �.x/ 6T x

for all x 2 2N . Applying Martin’s Theorem (7 • 2), there exists a coneD � C such that either
(i) �.x/ �T x for all x 2 D; or
(ii) �.x/ <T x for all x 2 D.

By Theorem BB (7A • 15), (i) cannot occur and thus (ii) holds. But then Slaman–Steel (7 • 6), there exists a cone
D0 � D such that � mapsD’ into a fixed�Tclass; say, Œz��T . Hence there exists a y 2 Œz��T such that ��1.y/

is 6Tcofinal. Now we can apply Martin’s Theorem (7 • 2) to see that there exists a cone D00 � Œ��1.y/��T . It
follows that � mapsD00 into Œy�

E2N
G

, which is what we wanted. a

There are two major pieces of content: this nonsmoothness result ofTheorem BB (7A • 15) and of course Slaman–Steel
(7 • 6).

Proof of Theorem BB (7 A • 15) .:.
Let H 6 Sym.N/ be a countable subgroup and D � 2Z be a cone such that E2N

H �D � �T�D. Suppose
� W D ! D is a Borelhomomorphism from�T�D to E2N

H �D such that �.x/ �T x for all x 2 D.

Since � is countable to one (since it’s going inside it’s own equivalence class) it follows that �"D is a Borel subset
of 2N . Also it is clear that �"D is 6Tcofinal. Applying Theorem 7A • 12, there exists a pointed tree T � 2<N

such that ŒT � � �"D. In particular, it follows that if x; y 2 ŒT � then

x �T y iff x E2
N

H y.
Let H D ¹hn W n 2 !º and let s 2 2N code the sequence hhn W n 2 !i. Then after replacing T by a suitable
pointed subtree by Result 7A • 13, we can suppose that s 6T T . Now we can do a simple diagonalization
argument.

Let x 2 ŒT � be the leftmost branch. Then clearly x �T T as T 6T x as a pointed tree, and x 6T T as just the
leftmost branch. Now define an increasing sequence of nodes yn 2 T as follows.

• y0 D ;.
• For yn defined, yC

n is such that yn � ynC 2 T is the next branching node. Let jyC
n j D `n. If hn.`n/ … x,

then let ynC1 D y
C
n
_
1. Otherwise, let ynC1 D y

C
n
_
0.

Taking y D
S
n<! yn 2 ŒT �. Then T 6T y 6T T ˚ x ˚ s �T T . Thus y �T T . But by construction, y … Hx,

a contradiction. a.

Nowwe give some open pproblems before looking at someBorel combinatorics. First, consider the following definition
and question due to Marks.

7A • 16. Definition
A countable Borel equivalence relation E is measure universal iff for every countable Borel equivalence relation
F on a standard Borel spaceX and any Borel probability measure � onX , there exists a Borel subset Y � X with
�.Y / D 1 such that F�Y 6B E.

7A • 17. Open Problem

Does there exist a measure universal E which isn’t universal?

There are two results that suggest this might be interesting. The first, also due to Marks, is really quite weird.

7A • 18. Theorem

(i) Recursive isomorphism on 3N is countable universal.
(ii) Recursive isomorphism on 2N is measure universal.

Using MC, Thomas has shown the following.
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7A • 19. Theorem
(MC) If F is any countable Borel equivalence relation on X and � is any Borel probability measure, there exists a
Y � X with �.Y / D 1 such that F�Y isn’t weakly universal.

Eventually, we will prove Theorem 7A • 18, but it will require some Borel combinatorics.

Another open problem, practically an open area, is due to Marks.

7A • 20. Observation
There are very few countable Borel equivalence relations E for which it is known that E 6B�T.

7A • 21. Definition

Let ET1 be the orbit equivalence relation for F2 Õ .2/F2 .

The following conjecture due to Marks is open.

7A • 22. Open Problem

ET1 66B �T.

A slightly stronger conjecture of Thomas is the following.

7A • 23. Open Problem

If E is a nonhyperfinite countable Borel equivalence relation, then there exists a weakly universal countable Borel
F such that E 66B F .

Section 8. Borel Combinatorics

8 • 1. Definition
A Borel graph hX;Ri consists of a standard Borel spaceX and a symmetric, irreflexive, Borel relationR � X�X .

The first thing we will look at with these is chromatic number.

8 • 2. Definition
Let � D hX;Ri be a Borel graph. Then the Borel chromatic number �B.�/ is the least cardinality of a standard
Borel space Y such that there exists a Borel map c W X ! Y such that if x R y then c.x/ ¤ c.y/. Such a map c
is called a Borel coloring.

We need the Y to be contained in X so that we have a notion of Borel. Note that clearly �.�/, the actual chromatic
number, is no more than �B.�/.

8 • 3. Example

Let X D .2/Z and let �0 D hX;Ei where x E y iff T .x/ D y or T �1.x/ D y where T generates the action
Z Õ X .

We can actually calculate the Borel chromatic number of �0.

8 • 4. Theorem
For �0 as in Example 8 • 3, 2 D �.�0/ < �B.�0/ D 3.

Proof .:.
Since every connected component of �0 is a copy of Z, it’s clear that �.�0/ D 2.

To see that�B.�0/ > 2, suppose that c W X ! 2 is a Borel 2coloring. For i D 0; 1, letXi D ¹x 2 X W c.x/ D iº.
Therefore the restriction of c to each connected component gives alternating colors on Z. Thus X D X0 tX1 is
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a partition of X into two Borel subsets, each of which is invariant under 2Z Õ X . Let � be the usual uniform
product probability measure on X . Since Z Õ hX;�i is strongly mixing, 2Z acts ergodically on X . Therefore
either X0 or X1 has measure 1. But then �.X0/ D �.T .X0// D �.X1/ implies both have the same measure of
1, a contradiction.

The fact that �B.�0/ D 3 follows from the next theorem. a

As far as we know thus far, �B.�0/ 2 Œ3; 2
ℵ0 �. To prove that it is exactly 3, we need some notation for the next theorem.

8 • 5. Definition
If hX;Ei is a graph and x 2 X , then

• E.x/ D ¹y 2 X W y E xº.
• deg.x/ D jE.x/j.

The next theorem is fairly easy if we leave out the “Borel”.

8 • 6. Theorem
If � D hX;Ri is a Borel graph such that deg.x/ � k for all x 2 X . Then �B.�/ � k C 1.

First we need some basic results in Borel combinatorics.
8 • 7. Definition

A graph � D hV;Ei is locally finite iff deg.v/ <1 for all v 2 V .

8 • 8. Result
If � D hX;Ri is a locally finite Borel graph, then �B.�/ � !.

Proof .:.
Let hX; T i be a Polish space realizing the standard Borel structure of X . Let ¹Un W n 2 !º be a basis for
the topology T . Then we can define a Borel !coloring by taking c.x/ to be the least n such that x 2 Un and
R.x/ \ Un D ;. a

This, of course, is not the most efficient way of proceeding, since the null graph hX;;i would use up countably many
colors, for example.

8 • 9. Definition
Let � D hV;Ei be a graph.

(i) A subsetD � V is discrete iff no two elements ofD are joined by an edge.
(ii) A maximal discrete subsetD � V is called kernel

Of course, there is always a kernel, but the issue is whether there is a kernel that is Borel.

8 • 10. Result
If � D hX;Ri is a locally finite Borel graph, then there exists a Borel kernelD � V .

Proof .:.
For each Borel subset Y � X , let R.Y / D ¹x 2 Y W 9y 2 Y .y R x/º.

Claim 1
f Y � X is Borel, then R.Y / is Borel.

Proof .:.
Let P D R \ .X � Y /. Then P is a Borel subset of X � X , and each section Px countable (and actually
finite as � is locally finite). By Theorem 2 • 6, R.Y / D projX .P / is Borel a
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Next, let c W X ! ! be a Borel !coloring; and for each n 2 !, let Xn D ¹x 2 X W c.x/ D nº. Then
X D

F
n2! Xn is a partition of into discrete Borel subsets. We use this to inductively define our Borel kernel.

Define inductively Borel subsets Yn � X by
• Y0 D X0;
• YnC1 D Yn t .XnC1 nR.Yn//.

Then Y D
S
n2! Yn is a discrete Borel subset. To see that Y is a kernel, let x 2 X nY . Then x 2 XnC1 for some

n � 0. Since x … YnC1, it follows that x 2 R.Yn/. a

And now we can prove Theorem 8 • 6.

Proof of Theorem 8 • 6 .:.
We argue by induction on k � 0. The result is clear when k D 0. Suppose the result holds for some k > 0.
Let � D hX;Ri be a Borel graph such that deg.x/ � k C 1 for all x 2 X . Let Y � X be a Borel kernel, and
let Z D X n Y . Then degZ.v/ � k for all v 2 Z (since everyone needs to be connected to someone in Y as
otherwise Y wouldn’t be maximal). Hence there exists a Borel .k C 1/coloring c0 W Z ! ¹0; � � � ; kº. Extend
c0 to a .k C 2/coloring of X by c.y/ D k C 1 for all y 2 Y . a

Let �0 D hX;Ri be the graph associated with Z Õ .2/Z as before. Let Y � X be a kernal. Then each connected
component of X n Y is either an isolated point, or else a pair. So it is very easy to define a Borel 3coloring of �0.

Next we start working towards the following theorem of Marks, which uses Borel determinacy.

8 • 11. Theorem
For each n � 1, there exists an nregular acyclic Borel graph � with �B.�/ D nC 1

8 • 12. Definition
A marked group is a group with a specified set S� � � n 1 of generators.

8 • 13. Definition
For � a marked group and X a standard Borel space, G.�;X/ is the Borel graph with vertex set

Free.X�/ D ¹y 2 X� W y ¤ y for all 1 ¤ y 2 �º
and edge set E defined by x E y iff 9 2 S� .x D y _ y D x/.

8 • 14. Definition
If � and � are marked groups, then � �� is the free product with generating set S� [ S�.

8 • 15. Theorem
If � , � are finitely generated marked groups, then

�B.G.� ��;N// > �B.G.�;N//C �B.G.�;N// � 1.

To try to understand this, consider � D � D C2. Then each connected component of G.�;N/ is just a pair. Thus
�B.G.�;N// D �.G.�;N// D 2. Each connected component of G.� � �;N/ looks like Z: it’s just a line (but
generated in a different way). By Theorem 8 • 15,

�B.G.� ��;N// � 2C 2 � 1 D 3.
Since each vertex has degree 2, �B.G.� ��;N// D 3.

The only thing mysterious or “yucky” abou thte theorem is the appearance of N. Fortunately, Seward–TuckerDrob
have shown that every finitely generated group � and all n � 2 have �B.G.�; n// D �B.G.�;N//. We, however, rely
on N for the proof of Theorem 8 • 15.

42



§8 MATH 569 CLASS NOTES

8 • 16. Corollary

For each n � 1, let �n D C2 � � � � � C2 (n times). Therefore G.�n;N/ is a cyclic nregular graph with
�B.G.�n;N// D nC 1.

Proof .:.
Clearly the Cayley graph of �n is the nregular tree. It is also clear that �B.G.�1;N// D �B.G.C2;N// D 2.
Suppose inductively that �B.G.�n;N// D nC 1. Therefore by Theorem 8 • 15,

�B.G.�nC1;N// D B.G.�n � C2;N//
� �B.G.�n;N//C �B.G.C2;N// � 1

� .nC 1/C 2 � 1 D nC 2.
Since the graph of �nC1 is .nC 1/regular, it follows that �B.G.�nC1;N// � nC 2. Hence �B.G.�nC1;N// D
nC 2. a

Theorem 8 • 15 is a consequence of the following main theorem of Marks.

8 • 17. Theorem (Marks' Main Theorem)

If � , � are nontrivial countable groups and A � Free.N���/ is Borel, then at least one of the following holds:
(i) There exists a continuous, injective �equivariant (x D y implies f .x/ D f .y/) map f W Free.N�/ !

Free.N���/ such that imf � A.
(ii) There exists a continuous injective �equivariant (ıx D y implies ıf .x/ D f .y/) map f W Free.N�/ !

Free.N���/ such that imf � N��� n A.

The proof ofMarks’MainTheorem (8 • 17) uses Borel determinacy. In fact, Marks’MainTheorem (8 • 17) is equivalent
to Borel determinacy modulo Z�

C†1-ReplacementC DC.

Before proving Marks’ Main Theorem (8 • 17), we derive some consequences.

Proof of Theorem 8 • 15 .:.
Suppose that

�B.G.�;N// D nC 1

�B.G.�;N// D mC 1.
Suppose that c W G.� ��;N/! .nCm/ is a Borel .nCm/coloring. Let

A D ¹x 2 G.� ��;N/ W 0 � c.x/ � n � 1º.

Case 1. Suppose there exists a continuous, injective, �equivariant f W G.�;N/ ! G.� � �;N/ such that
imf � A. Suppose that x; y 2 Free.N�/ D G.�;N/ are adjacent. Then without loss of generality,
there exists a  2 S� such that y D  � x. Since f is �equivariant, f .y/ D f . � x/ D  � f .x/ and
so f .x/, f .y/ are adjacent and so c.f .x// ¤ c.f .y//. But this means c ı f is a Borel ncoloring of
G.�;N/, a contradiction with the fact that �B.G.�;N// D nC 1.

Case 2. By Marks’ Main Theorem (8 • 17), there then exists an injective, continuous, �equivariant map f W
G.�;N/! G.� ��;N/ such that

imf � G.� ��;N/ n A D ¹x 2 G.� � Z/ W n � c.x/ � .nCm/ � 1º.
It follows as before that c ı f is a Borel mcoloring of G.�;N/, a contradiction. a

8 • 18. Definition
A graph hV;Ei is bipartite iff there exists a partition V D A tB such that every edge e 2 E joins a vertex v 2 A
to a vertex w 2 B .
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8 • 19. Definition
A perfect matching of a graph hV;Ei is a collectionM � E such that every vertex v 2 V lines on a unique edge
e 2M .

8 • 20. Theorem (König's Theorem)

An nregular, bipartite graph has a perfect matching.

8 • 21. Observation
There exists a 2regular, bipartite, Borel graph with no Borel perfect matching.

Proof .:.
Let hV;Ei be Free.Z; 2Z/. Then every connected component has a graph that looks like Z. So each element’s
edge is determined by the first choice of our edge in M , yielding an ability to choose elements. Formally, let
M � E be a perfect matching and let < be a Borel linear ordering of V . Then

X0 D ¹v 2 V W v is the < least element of v 2 e 2M º
is 2Zinvariant and we reach a contradiction as before. a

Question: What about Borelbipartite (meaning the pieces of the partition are Borel) graphs? Answer: the answer still
is that there may not be a perfect matching. Consider the following theorem due to Marks.

8 • 22. Theorem
For every n � 1, there exists an nregular, acyclic, Borelbipartite graph with no Borel perfect matching.

To prove this, we make use of the following theorem.

8 • 23. Theorem
Let � , � be countable groups and let E� , E� be the orbit equivalence relations for the Borel actions � Õ
Free.N���/ and � Õ free.N���/. Then E� , E� do not have disjoint, Borel complete sections.

Proof .:.
Suppose that S , T are disjoint, Borel complete sections forE� ,E�. We will applyMarks’ MainTheorem (8 • 17)
with A D T . Thus

S � Free.N���/ n A D Free.N���/ n T .

Case 1. Suppose there exists a continuous, injective, �equivariant map f W Free.N�/ ! Free.N���/ with
imf � A D T . Then imf ¤ ; is a �invariant subset such that S \ imf D ;. Thus S is not a
complete section for E� .

Case 2. Otherwise, there exists a continuous, injective, �equivariant map f W Free.N�/! Free.N���/ with
imf � Free.N���/ n T D S . This implies as before that T is not a complete section for E�, a
contradiction. a

Proof of Theorem 8 • 22 .:.
Let � , � be cyclic of n � 1. Let Y �

�
Free.N���/

�n be the standard Borel space consisting of the E� classes
and E�classes.

Let � be the intersection graph on � i.e. s; t 2 Y are adjacent iff s\ t ¤ ;. Note that each edge joins anE� class
to an E�class and so � is Borel bipartite. Also � is clearly nregular, since the � ��action is free.

Since � is bipartite, it contains no odd cycles. Suppose � contains an even cycle; say
s1; t1; s2; t2; � � � ; s`; t`

Without loss of generality, we can suppose the si are E� classes.

Let ¹xº D s1 \ t1. Then there exists 1� ¤ ı1 2 � such that ¹ı1xº D t1 \ s2. Similarly, there is a 1� ¤ 1 2 �
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such that ¹1ı1xº D s2 \ t2. Continuing in this fashion, there exist 1� ¤ ıi 2 � and 1� ¤ i 2 � for
1 � i � ` � 1 such that

`�1ı`�1 � � � 1ı1x 2 s` \ t`.
But then as a cycle, there is a 1� ¤ ı` 2 � such that

ı``�1ı`�1 � � � 1ı1x D t` \ s1.
But this is in the same �orbit as x, and thus there is a  2 � such that

ı``�1ı`�1 � � � 1ı1x D x,
contradicting the fact that � �� acts freely.

Now suppose thatM is a Borel perfect matching of �, and let
A D ¹x 2 Free.N���/ W there exists an ¹s; tº 2M such that s \ t D ¹xºº.

Then A, Free.N���/ n A are disjoint, Borel complete sections for E� , E�, contradiction. a

The following condition allows you to have disjoint complete sections.

8 • 24. Definition
Suppose that E0, E1 are countable Borel equivalence relations on a standard Borel space X .

• E0 _E1 is the smallest equivalence relation which contains E0, E1.
• E0, E1 are everywhere nonindependent iff whenever C is an .E0 _ E1/class, then there exists a sequence
of distinct elements x0; � � � ; xn 2 C with n � 1 and a sequence i0; i1; � � � ; in 2 ¹0; 1º with ij ¤ ijC1 for
j < n and in ¤ i0 such that

x0 Ei0 x1 Ei1 x2 � � � xn Ein x0.

Note that E _ F is a countable Borel equivalent relation. To see this, by Feldman–Moore Theorem (2 • 2), there exist
countable groups G0, G1, and Borel actions Gi Õ X such that E D EXG0

and F D EXG1
. Let G D G0 � G1, and let

G Õ X be the corresponding action. Then E _ F D EXG .

8 • 25. Open Problem

Let �fg be the space of finitely generated groups, and let R be the Borel relation defined by � R � iff there exist
isomorphic (unlabelled) Caley graphs of � and �.

R isn’t an equivalence relation. Is the transitive closure of R Borel?

The proof of Marks’ Main Theorem (8 • 17) will make use of the following theorem.

8 • 26. Theorem
If E0, E1 are everywhere nonindependent countable Borel equivalence relations on the stadard Borel space X ,
then there exists a partition X D X0 tX1 such that each Xi is a Borel complete section for Ei .

The above theorem makes use of yet another result.

8 • 27. Definition
Let E be a countable Borel equivalence relation on X .

• ŒE�<1 is the Borel subset of the standard Borel space ŒX�<1 consisting of the nonempty finite S � X such
that S is contained in a single Eclass.

• �E D hŒE�
<! ; Ri where S R T iff S \ T ¤ ;.

8 • 28. Theorem
�B.�E / � !.
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Proof .:.
First let hgn W n 2 !i be a sequence of Borel permutations gn W X ! X with g2n D 1 such that if x; y 2 X , then

x E y $ x D y or there exists n 2 ! such that gn.x/ D y.
Also fix some Borel linear order < of X . Given S 2 ŒE�<1, let S D ¹x0; � � � ; xnº where x0 < � � � < xn.
Then c.S/, the color of the set, is the lexicographically least sequence ¹ki;j ºi¤j such that for all i < j � n,
gki;j

� xi D xj .

We will show that if S ¤ T 2 ŒE�<1 with S \ T ¤ ;, then c.S/ ¤ c.T /. So suppose S ¤ T are a
counterexample. Then clearly jS j D jT j. Let

S D ¹x0; � � � ; xnº

T D ¹y0; � � � ; ynº

be the <enumerations. Let i; j � n be such that xi D yj .

Case 1. Suppose that i ¤ j . Then without loss of generality, i < j . Hence i < j implies xi < xj D gki;j
.xi /.

But this says that yj < gki;j
.yj / D yi , which requires j < i , a contradiction.

Case 2. So we must have that i D j . But then for each ` ¤ i , we have x` D gki;`
.xi / D gki;`

.yi / D y`. And
so S D T , a contradiction. a

Proof of Theorem 8 • 26 .:.
Let A � ŒE0 _ E1�

<! be the Borel subset of finite S 2 ŒE0 _ E1�<1 such that there exists an ordering S D
¹x0; � � � ; xnº and a sequence ¹i0; � � � ; inº with ij ¤ ijC1 and in ¤ i0 such that

x0 Ei0 x1 Ei1 x2 � � � xn Ein x0. (?)
Then A contains a finite, nonempty subset of each .E0 _E1/class.

Let c W ŒE0 _ E1�<! ! ! be a Borel !coloring. Let B � A be the Borel subset S 2 A such that whenever
T 2 A lies in the same .E0 _ E1/class, then c.S/ � c.T /. Then the elements of B are pairwise disjoint; and
B still contains a finite, nonempty subset of each E0 _E1class. We fix a Borel way of ordering each S 2 B as
x0; � � � ; xn and assigning a sequence i0; � � � ; in such that (?) holds.

For each " D 0; 1, let A";0 consist of those x 2 X such that there exist S D ¹x0; � � � ; xnº 2 B and j � n such
that x D xj and ij D ".

For example: if we start with x0 E0 x1 E1 x2 E0 x3 E1 x0 then x0; x2 2 A0;0 and x1; x3 2 A1;0.

Clearly A0;0 \ A1;0 D ;. Also, note that for each " D 0; 1, and x 2 A";0, there exists a y 2 Œx�E"
such that

y 2 A1�";0. We now inductively construct disjoint Borel sets A0;n, A1;n satisfying:
(a) A";n � A";nC1,
(b) for each x 2 A";n, there exists a y 2 Œx�E"

such that y 2 A1�";n.

Case 1. Suppose n is even. Then we define
A0;nC1 D A0;n [

�
ŒA0;n�E0

n A1;n
�

A1;nC1 D A1;n [
�
ŒA0;n�E1

n A0;nC1

�
.

Clearly A0;nC1, and A1;nC1 are disjoint and (a) holds. To see that (b) holds, first suppose that x 2 A0;nC1 n

A0;n. Then there exists (by saturation by E0) an x0 2 A0;n such that Œx�E0
D Œx0�E0

, and by induction there
exists a y 2 A1;n � A1;nC1 such that y 2 Œx0�E0

D Œx�E0
. Next, suppose that x 2 A1;nC1 n A1;n. As it’s in

the saturation of the previous one, there exists a y 2 A0;n � A0;nC1 such that Œx�E1
D Œy�E1

. Thus (b) holds.

Case 2. Suppose n is odd. Then we define
A0;nC1 D A0;n [

�
ŒA1;n�E0

n A1;n
�

A1;nC D A1;n [
�
ŒA1;n�E1

n A0;nC1

�
.

46



§8 MATH 569 CLASS NOTES

Arguing as above, the inductive hypotheses still hold.

Let X0 D
S
n2! A0;n and X1 D

S
n2! A1;n. Then it suffices to prove the following claims.

Claim 1
X D X0 tX1.

Claim 2
If " D 0; 1, then X" is a complete Borel section for E1�".

Proof .:.
Assuming Claim 1, consider the case where " D 0. Let x 2 X . If x 2 X0, then clearly Œx�E1

\ X0 ¤ ;.
Otherwise, by Claim 1, x 2 X1 and hence there exists a y 2 Œx�E1

such that y 2 X0. a

Proof of Claim 1 .:.
Suppose z 2 X . Then there exists x0 2 A0;0 \ Œz�E0_E1

. It follows that there exists a sequence
x0 Ei0 x1 Ei1 x2 � � � xm Eim z,

for i` 2 ¹0; 1º. We can suppose inductively that xm 2 X0[X1. Suppose, for example, that xm 2 X0. Then
there exists an even n such that xm 2 A0;n. If z 2 A0;n [A1;n, we are done. If not, and z 2 ŒA0;n�E0

, then
z 2 A0;nC1. Otherwise, z 2 ŒA0;n�E1

and so z 2 A1;nC1. a

a

So we are almost ready to start proving Marks’ Main Theorem (8 • 17). Before finally beginning the proof, we need
one more technical lemma.

8 • 29. Definition
Let Y � N��� be the set of all elements y 2 N��� such that for all g 2 � ��,

 � gy ¤ gy for all  2 � n ¹1�º, and
ı � gy ¤ ıy for all ı 2 � n ¹1�º.

Note that Y is � ��invariant. Clearly, Free.N���/ � Y . So what concerns us is the difference.

Let E� be the �orbit equivalence relation on N��� and E� be the �orbit equivalence relation.

8 • 30. Lemma
E��.Y n Free.N���// and E��.Y n Free.N���// are everywhere nonindependent.

Proof .:.
Let C � Y n free.N���/ be a .� ��/orbit. Then there exists an x 2 C and g 2 .� ��/ n .� [�/ such that
g � x D x. Suppose, for example, that g D 1ð1 � � � nın where i 2 � n ¹1�º, ıi 2 � n ¹1�º for 1 � i � n
and  2 � . We also suppose n is minimal within C .

Case 1. Suppose  D 1. Then x, ınx, nınx, ..., ı1 � � � nınx, 1ı1 � � � ınx D x witnesses nonidependence.
Case 2. Suppose  ¤ 1. Suppose 1 ¤ 1. Then replacing 1 by  0

1 D 1 and x by x0 D x, we obtain
 0
1ı1 � � � nınx

0 D x0. And so we are in (Case 1).
Case 3. Suppose 1 D 1. Then replacing x by x0 D x, we obtain ı12ı2 � � � ın�1nın �x

0 D x0. Byminimality
of n, we have a contradiction. a

Now we will prove Marks’ Main Theorem (8 • 17).
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Proof of Marks’ Main Theorem (8 • 17) .:.
Each nonidentity element of � �� can be uniquely written as a finite product of the form

(i) i0ıi1i2 � � �; or
(ii) ıi0i1ıi2 � � �;

where ij 2 � n ¹1º, and ıij 2 � n ¹1º. Words of the form (1) are called �words and words of the form (ii) are
called �words. We will make use of games for building an element y 2 N���, where I decides y on �words,
and II* decides y on �words.

First we fix injective (possibly finite) listings 0, 1, ...; and ı0, ı1, ... of � n ¹1º and � n ¹1º respectively.

Next we define the turn function t W .� ��/ n ¹1º ! N as follows. Suppose ˛ 2 .� ��/ n 1 has the form (i)
or (ii) with associated sequence i0, i1, ..., im (where the indices are from these fixed enumerations). Then t .˛/ is
the least n such that ij C j � n for all j � m.

For example, the elements with t .˛/ D 0 are 0, ı0. The elements with t.˛/ D 1 are 1, 0ı0, 1ı0, and similarly
ı1, ı00, and ı10. And so on.

Write e for 1N��� . For each Borel subset B � Y and k 2 N, the following game GB
k

produces an element
y 2 N��� with y.e/ D k. First we set y.e/ D k. On the nth turn of GB

k
, first I defines y.˛/ on the �words

with t.˛/ D n; and II defines y.˛/ on the �words with t.˛/ D n.

The winning conditions for GB
k
:

• If y 2 Y , then II wins iff y 2 B .
Suppose that y … Y . Then there exists an ˛ 2 � � � such that either 9 2 � n ¹1º.˛�1y D ˛�1y/ or
9ı 2 � n ¹1º.ı˛�1y D ˛�1y/. In the former case, we say that .˛; �/ witnesses that y … Y , and in the latter
case, .˛;�/ witnesses that y … Y . In both cases, we say that ˛ witnesses that y … Y .

• If y … Y and .e; �/ witnesses that y … Y then I loses.
Otherwise, if .e;�/ witnesses that y … Y , then II loses.
If neither of the above cases hold, then I wins iff there is a �word ˛ witnessing that y … Y such that for
all �words ˇ with t .ˇ/ � t .˛/, ˇ doesn’t witness that y … Y .

Finally, recall that E��.Y n Free.N���// and E��.Y n Free.N���// are everywhere nonindependent. Hence
there exists a Borel subsets C � Y nFree.N���/ such that C meets every E�class on Y nFree.N���/ and the
complement C c meets every E� class.

Now let A � Free.N���/ be Borel. Then we define BA D A [ C � Y . So by Borel Determinacy, for each
k 2 N, either I or II has a winning strategy in the game GBA

k
. Hence one of the players has a winning strategy

for infinitely many k 2 N.

Suppose, for example, that S D ¹k 2 N W II has a winning strategy in GBA

k
º is infinite. Clearly there exists an

injective, continuous, �equivariant map from Free.N�/ to Free.S�/. Hence it’s enough to show that there is an
injective, continuous, �equivariant map f W Free.S�/! Free.N���/ such that imf � A.

We will define f such that for all x 2 Free.S�/, the following hold:
(i) f .x/./ D x./ for all  2 �;
(ii) f .x/ will be a winning outcome for II’s winning strategy in GBA

x.e/
.

Clearly (i) ensures that f is injective. Suppose, for the moment, that f is �equivariant and that f .x/ 2 Y for
all x 2 Free.S�/. I will help to ensure that these are both true.

Claim 1
With the suppositions above, f .x/ 2 A for all x 2 Free.S�/.
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Proof .:.
Since f .x/ 2 Y , and and f .x/ is an outcome in II’s winning strategy inGBA

x.e/
, it follows that f .x/ 2 BA D

A [ C . Suppose that f .x/ 2 C � Y n Free.N���/. Since Free.N���/ is �invariant, it follows that if
 2 � , then f .x/ D f .x/Y and in fact is in C . And so � � f .x/ � C . But this contradicts the fact that
every �orbit on Y n Free.N���/ intersects C c. a

The basic idea: in order to deal with the assumptions for a single x, while II uses the winning strategy in the
games GBA

x.�1/
, I plays to ensure that f is �equivariant and that f .x/./ D x./.

Finally fix some x 2 Free.S�/. Then for each  2 � , we will play an instance of GBA

x.�1/
to produce an element

y 2 N��� which will be equal to f .x/. We begin by setting f .x/.e/ D x.�1/ for each  2 � (we’re playing
infinitely many games simultaneously).

Now suppose that f .x/.˛/ is defined for all  2 � and ˛ 2 � � � with t.˛/ < n. Then the nth move of I in
each game is as follows. Suppose ˇ is a �word with t.ˇ/ D n. Then ˇ D i˛ where i � n and t .˛/ < n.
For every  2 � , we define f .x/.i˛/ to be .�1

i f .x//.˛/, which has been defined. Then II uses the winning
strategy in all of these games to define .f .x//.ıi˛/ for every �word ıi˛ with t.ıi˛/ D n. Clearly f is �
equivariant by the way I has played, and f .x/./ D x./, as a special case of �equivariance. Also, it is clear
that f is continuous, since if the words agree on large initial segments, then the players play along those long
initial segments. Thus it only remains to check that f .x/ 2 Y for all x 2 Free.S�/.

First, since x 2 Free.S�/ and f .x/�� D x�� , we have that f .x/ ¤ f .x/ for all  2 � n ¹1º. Thus .e; �/
doesn’t witness that f .x/ … Y . Since f .x/ is an outcome for II’s winning strategy, .e;�/ doesn’t witness
f .x/ … Y . Now we prove inductively that ˛ doesn’t witness f .x/ … Y for all x 2 Free.S�/ and all ˛ 2 � ��
with t .˛/ D n. This is certainly true for the identity, so now we proceed by inductionon n. First, suppose ˛ D ˇ
is a �word with t.˛/ D n and t .ˇ/ < n. Since

˛�1f .x/ D ˇ�1�1f .x/ D ˇ�1f .�1x/,
and ˇ doesn’t witness that f .�1x/ … Y , it follows that ˛ doesn’t witness f .x/ … Y . Let ˛ be a �word with
t .˛/ D n. Hence we can suppose that if ˇ is a �word with t .ˇ/ � n, then ˇ doesn’t witness that f .x/ … Y .
Since f .x/ is an outcome of II’s winning strategy, it cannot be that ˛ is the first time that a witness appears (as
that means that II would lose). It follows that ˛ cannot witness that f .x/ … Y . Hence f .x/ 2 Y , as desired. This
completes the proof, as the case is symmetric where S is the k 2 N where I has a winning strategy for GBA

k
. a

§8A. Recursive Isomorphism

We now state another theorem of Marks (recall F2 is the free group on two generators).

8A • 1. Theorem
Let G 6 Sym.F2 �N/ be a countable group of permutations such that for each g 2 F2, there exists �g 2 G such
that �g.h; n/ D hgh; ni for all hh; ni 2 F2 �N. Then

(i) G Õ 2F2�N is a measure universal countable Borel equivalence relation.
(ii) G Õ 3F2�N is a universal Borel equivalence relation.

It’s open whether the action in (1) is universal. As stated, of course, this is hard to really understand. So instead we
have the following corollary.

8A • 2. Corollary

(i) Recursive isomorphism on 2N is measure universal.
(ii) Recursive isomorphism on 3N is countable universal.
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Proof .:.
Let Y 2 ¹2; 3º. Via computable bijection between N and F2 � N, we can identify 2N and 2F2�N . Then G D
Rec.F2 �N/ (recursive permutations of F2 �N) satisfies the hypotheses of Theorem 8A • 1. a

Proof of Theorem 8A • 1 .:.
Throughout, Y 2 ¹2; 3º, as much will be the same. LetE1 be the universal countable Borel equivalence relation
arising from F2 Õ X where X D 2F2 . Let f W X ! Y N be any Borel map. We modify this to get a map from
X to Y F2�N .

Consider the associated Of W X ! Y F2�N defined by Of .x/.h; n/ D f .h�1x/.n/. Suppose x; y 2 X and g 2 F2
satisfies gx D y. Then

.�g � Of .x//.h; n/ D Of .x/.g�1h; n/ D f .h�1gx/.n/ D Of .gx/.h; n/ D Of .y/.h; n/.
Thus �g Of .x/ D Of .gx/ D Of .y/, and Of is a Borel homomorphism from F2 Õ X to F2 Õ Y F2�N .

We will define an injection f W X ! Y N so that Of witnesses either (i) or (ii) of Theorem 8A • 1.

Basic Idea: we will construct f such that for all � 2 G and x 2 X , either
• � � Of .x/ … im Of ; or
• � � Of .x/ D Of .y/ for some y E1 x.

We now introduce a definition to help with this.

8A • 3. Definition
• � 2 G has type I iff for every k > !, there existm; n > k with n ¤ m such that ��1.1; n/ 2 F2�¹mº.
• � 2 G has type II if it is not type I, and there exists an m such that for infinitely many n 2 N,
��1.1; n/ 2 F2 � ¹mº.

• � 2 G has type III iff it is not type I nor type II.

Note that if g 2 F2, then �g has type III. If � 2 G has type III, then for all but finitely many n 2 N, ��1.1; n/ 2

F2 � ¹nº.

For each � 2 G of type II, fix some m� such that there exist infinitely many n 2 N with ��1.1; n/ 2 F2 � ¹m�º.
We say that each such n witnesses that � has type II.

To begin, we inductively construct a partition N D S0 t S1 t S2 t S3 such that S2 and S3 are infinite, and for
every � 2 G,

• if � has type I, then there exist an n 2 S1 and m 2 S0 such that ��1.1; n/ 2 F2 � ¹mº;
• if � has type II, then there are infinitely many n 2 S2 and infinitely many n 2 S3 such that n witnesses that
� has type II.

Now we make another definition, and then we actually prove something.

8A • 4. Definition
A set S � N is good if whenever � 2 G has type II, then infinitely many n 2 S witness this.

Hence S2 and S3 are good by definition. Furthermore, any good subset can be partitioned into two good subsets.
During the proof, we will successively add more constraints to the map f W X ! Y N .

Constraint 1. For every x 2 X , define f .x/.m/ D

´
0 if m 2 S0
1 if n 2 S1.

Claim 1

If � has type I, then � Of .x/ … im Of for all x 2 X .
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Proof .:.
There exists an n 2 S1 and m 2 S0 such that ��1.1; n/ D hh;mi for some h 2 F2. Hence

.� � Of .x//.1; n/ D Of .x/.h;m/ D f .h�1x/.m/ D 0,
since m 2 S0. On the other hand, for all y 2 X ,

Of .y/.1; n/ D f .y/.m/ D 1.
Thus � Of .x/ … ran Of . a

Claim 2

If ��1 has type I, then � Of .x/ … ran Of for all x 2 X .

Proof .:.
Otherwise, there exist x; y 2 X such that � Of .x/ D Of .y/; and so ��1 Of .y/ D Of .x/, which contradicts
Claim 1. a

So we only need to worry about the elements where it and its inverse have type II or III. Let �0; �1; � � � 2 G
enumerate the elements ofG such that both � and ��1 have type II or III (not necessary both with the same type).
Since S2 is good and every good set can be partitioned into two good sets, we can inductively define infinite,
disjoint subsets S2;0, S2;1, � � � of S2 such that:

• If �i has type II, then every n 2 S2;i witnesses this;
• if �i has type III, then every ��1.1; n/ 2 F2 � ¹nº for every n 2 S2;i .

Constraint 2. For each i , let hi W X ! 2S2;i be a Borel bijection. Then for every x 2 X , define f .x/.n/ D
hi .x/.n/ iff n 2 S2;i .

So we’ve defined f on S0 and S1, and we’re dealing with S2 and S3. Next, let S 0
3;0, S3;0, S 0

3;1, S3;1, ..., be (finite
and possibly empty) disjoint subsets of S3 such that:

• If �i or ��1
i have type II, then S 0

3;i contains m�i
and/or m��1

i
provided they’re not already included in

S0 [ S1 [ S2 [
S
j<i .S

0
3;j [ S3;j /, where m�i

is as in Definition 8A • 3 for type II.
• If �i has type II, then S3;i contains an n which witnesses that �i has type II.
• If �i has type III, then jS3;i j D 2 and each n 2 S3;i satisfies ��1

i .1; n/ 2 F2 � ¹nº.
Again, there is no problem defining S 0

3;i and S3;i .

Constraint 3. We define f .x/.n/ D 0 if n 2 S2 n
S
i S2;i or n 2 S3 n

S
i S3;i .

Finally, we will define f .x/.n/ for n 2 S3;i by induction on i 2 !. Suppose we have done this for j < i . In
essence, there is only one candidate.

Claim 3
Suppose that � 2 ¹�i ; ��1

i º. Then there exists a fixed Borel map g� W X ! X such that for any Borel map
f W X ! Y N satisfying all our previous constraints before step i , if � Of .x/ D Of .y/, then y D g�.x/.
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Proof .:.
First suppose that � has type II. Let � D �j (possibly j � i ). Then f .x/.m�/ has already been defined for
each x 2 X (being either 0 or else defined at an earlier stage). Thus for every n 2 S2;j ,

� Of .x/.1; n/ D Of .x/.��1.1; n// D Of .x/.n; m�/ D f .
�1
n x/.m�/,

for some n 2 F2, has already been defined. Suppose that x; y 2 X and that � Of .x/ D Of .y/. Then for each
n 2 S2;j , by constraint 2,

hj .y/.n/ D f .y/.n/ D Of .y/.1; n/ D � Of .x/.1; n/.
Since hj W X ! 2S2;j is a bijection, there exists at most one such y; namely g�.x/ D h�1

j .n 7!

� Of .x/.1; n//, which has already been defined.

Next, suppose that � has type III. Then for every n 2 S2;j ,
� Of .x/.1; n/ D Of .x/.��1.1; n// D Of .x/.n; n/ D f .

�1
n x/.n/,

for some n 2 F2, has been defined. As above, there exists at most one y such that � Of .x/ D Of .y/; namely
h�1
j of this function: y D h�1

j .n 7! � Of .x/.1; n//. a

For each i , let gi W X ! X be the Borel partial function defined by
gi .x/ D y iff g�i

.x/ D y and g��1
i
.y/ D x.

Therefore,
• If �i Of .x/ D Of .y/, then gi .x/ D y.
• gi is an injection.

To finish the proof, it is enough to complete the construction of f such that for all x 2 X and i ,
either gi .x/ E1 x or �i Of .x/ ¤ Of .gi .x//. (?)

We now continue with step i of the construction. First, suppose that �i has type II. Choose some ni 2 S3;i such
that ni witnesses that �i has type II. Then there exists a i 2 F2 such that ��1

i .1; ni / D hi ; m�i
i. Recall that

�i Of .x/.1; ni / D f .
�1
i x/.m�i

/ has been defined. Hence to ensure that �i Of .x/.1; ni / ¤ Of .gi .x//.1; ni /, where
then f .gi .x//.1; ni / D f .gi .x/.n/, it is enough for each y 2 X to define

f .y/.ni / D

´
1 � f .�1

i g�1
i .y//.m�i

/ if g�1
i .y/ is defined

0 otherwise.
And thus we’ve “killed off” all of type II. More precisely, we have the following.

Claim 4

If �i has type II and f W X ! Y N satisfies our current constrains, then for all x 2 X , �i Of .x/ … im Of .

To sum up, for each i , there exists a Borel partial map gi W X ! X such that
• �i Of .x/ D Of .y/, then gi .x/ D y; and
• gi is an injection.

Moreover, we’ve dealt with types I and II.

Continuing with step i , suppose �i has type III. Then jS3;i j D 2 and for each n 2 S3;i , there exists a n 2 F2 such
that ��1

i .1; n/ D hn; ni. For each n 2 S3;i (all two of them), let gi;n W X ! X be the Borel partial function
defined by gi;n.y/ D �1

n g�1
i .y/. Then if gi .x/ D y and �i Of .x/ D Of .y/, for every n 2 S3;i ,

f .y/.n/ D Of .y/.1; n/ D �i Of .x/.1; n/

D Of .x/.��1
i .1; n// D Of .x/.n; n/

D f .�1
n x/.n/ D f .gi;n.y//.n/
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In other words,
f .y/.n/ D f .gi;n.y//.n/. (†)

Until further notice, let Y D 3. Let �i;n be the Borel graph on X such that if x ¤ y, then x; y are adjacent iff
gi;n.x/ D y or gi;n.y/ D x. Then each vertex of�i;n has degree at most two. Hence there exist Borel 3colorings
ci;n W X ! 3. For each n 2 S3;i and y 2 X , define

f .y/.n/ D ci;n.y/ (‡)

Claim 5

If �i has type III and �i Of .x/ D Of .y/, then x E1 y.

Proof .:.
If �i Of .x/ D Of .y/, then y D gi .x/, the unique candidate, and so g�1

i .y/ D x is defined as well as g�1
i;n .y/

for each n 2 S3;i . Fix some n 2 S3;i .

Case 1. Suppose gi;n.y/ D y. Then y D �1
n g�1

i .y/ D �1
n x and so they are in the same orbit and thus

are E1 equivalent.
Case 2. Next suppose gi;n.y/ ¤ y. Then the ci;n.y/ ¤ ci;n.gi;n.y//; and hence (†) and (‡) imply that

�i Of .x/ ¤ Of .y/. a

This completes the proof of part (ii) of Theorem 8A • 1. So now we wish to show part (i): that G Õ 2F2�N is
measure universal.

8A • 5. Observation
Suppose that for every Borel probability measure � on X , there exists a Borel subset A � X with �.A/ D 1
such that E1�A is Borel reducible to (the orbit equivalence relation of) G Õ 2F2�N . Then G Õ 2F2�N is
measure universal.

Proof .:.
Let E be a countable Borel equivalence relation on a standard Borel space Z.
Let � be any Borel probability measure on Z.
Let ' W Z ! X be a Borel reduction from E to E1.
Let � D ' � �, the pushforward.

By the hypothesis, there then exists a Borel subset A � X with �.A/ D 1 such that E1�A is Borel
reducible to G Õ 2F2�N . Let Z0 D '�1.A/ by definition of the pushforward. Then �.Z0/ D 1 and
E�Z0 is Borel reducible to G Õ 2F2�N . a

Let � be any Borel probability measure on X . Now we use the following lemma to deduce the theorem. Then
we prove the lemma.

8A • 6. Lemma
For any standard Borel space X and Borel partial injections g0; g1 W X ! X , there exists a Borel subset
A � X with �.A/ D 1 and Borel maps c0; c1 W A! 2 such that for all x 2 A either

1. there exists i 2 2 such that .gi�A/.x/ is undefined;
2. there exists i 2 2 such that gi .x/ D x; or
3. there exists i 2 2 such that ci .x/ ¤ ci .gi .x//.

Assuming Lemma 8A • 6, we can complete the proof of part (i) as follows. Suppose �i has type III so jS3;i j D 2.
As before, for each n 2 S3;i , let gi;n W X ! X be the partial Borel injection defined by

gi;n.y/ D 
�1
n gi;n.y/,

where ��1
i .1; n/ D hn; ni. Applying Lemma 8A • 6, letAi � X be Borel with �.Ai / D 1 and let ci;n W Ai ! 2
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be as in the lemma. For each n 2 S3;i and y 2 X , we define

f .y/.n/ D

´
ci;n.y/ if 2 Ai
0 otherwise.

Claim 1

If �i has type III and �i Of .x/ D Of .y/ for x; y 2 Ai , then x E1 y.

Proof .:.
The proof is (practically) identical to Claim 5. a

Let A D
T
¹Ai W �i has type IIIº. Then Of �A is a Borel reduction from E1�A. This completes the proof of (i)

of Theorem 8A • 1 assuming Lemma 8A • 6. So finally, we turn to the proof of the lemma.

Proof of Lemma 8A • 6 .:.
For each i 2 2, let �i be the Borel graph such that x ¤ y are adjacent iff gi .x/ D y or gi .y/ D x. Let Si
be the Borel subset of those x 2 X such that either

• x has no neighbors in �i ; or
• the connected component of x has an element of degree 1.

Then there exists a Borel 2coloring of Si . Hence, to simplify notation, we can suppose that S0 D S1 D ;,
since we can deal with these easily. Let Ei be the countable Borel equivalence relation on X defined by
x Ei y iff x and y lie in the same connected component in �i . Note that each Ei is aperiodic.

8A • 7. Lemma
There exists a Borel partition X D B t C such that �.ŒB�E0

/ D �.ŒC �E1
/ D 1.

Assuming Lemma 8A • 7, we can prove Lemma 8A • 6 as follows. Let A D ŒB�E0
\ ŒC �E1

. Then:
• for all a 2 A, Œa�E0

\ B ¤ ;;
• for all a 2 A, Œa�E1

\ C ¤ ;.
Also �.A/ D 1. Let Ti be the Borel subset of a 2 A such that Œa�Ei

6� A. For each a 2 Ti , either
• a has no neighbors in �i�A; or
• the connected component of a in �i�A has an element of degree 1.

Thus there exist Borel 2colorings ci W Ti ! 2. Hence, it is enough to consider the case when T0 D T1 D ;;
i.e. A is both E0invariant and E1invariant.

Let ��
0 be the graph obtained from �0�A by removing edges ¹x; g0.x/º, where x 2 B; and let ��

1 be the
graph obtained from �1�A by removing edges ¹x; g1.x/º for x 2 C . Then every connected component in
��
i is either a singleton, or else contains a vertex of degree 1. Hence there exist Borel 2colorings ci W A! 2

and of ��
i . Note that if x 2 A, then either x … B or x … C . Hence either ¹x; g0.x/º is an edge of ��

0 or
¹x; g1.x/º is an edge of ��

1 . Thus either c0.x/ ¤ c0.g0.x//, or c1.x/ ¤ c1.g1.x//. a

So all that remains is the (second) lemma.

54



§9 MATH 569 CLASS NOTES

Proof of Lemma 8A • 7 .:.
SinceE0,E1 are aperiodic, byTheMarker Lemma (4 • 17), there exist decreasing sequencesC i0 � C i1 � � � �
of complete Borel Ei sections such that

T
n C

i
n D ;. Let Cn D C 0n [ C

1
n . Then C0 � C1 � � � � andT

n Cn D ;. Also, each Cn is a Borel complete section for both E0 and E1.

Let A0 be any Borel complete E0section (e.g. the whole space). We will define inductively a sequence
¹An W n is evenº of Borel complete E0sections and a sequence ¹Bn W n is oddº of Borel complete E1
sections, together with a strictly increasing sequence in of natural numbers.

Given An, we define BnC1 as follows. Since An D An n
T
` C` D

S
`An n C`, it follows that X DS

`ŒAnnC`�E0
sinceAn was a complete section. Hence there exists an in > in�1 such that�.ŒAnnCin �E0

/ �

1 � .1=2/n. We define BnC1 D .An n Cin/
c. Since BnC1 � Cin , BnC1 is a Borel complete section for E1

which satisfies �.ŒBc
nC1�E0

/ > 1 � .1=2/n. Similarly, given Bn, we define AnC1 D .Bn n Cin/
c where

in > in�1 satsifies �.ŒBn n Cin �E1
/ > 1 � .1=2/n.

Note that Ac
n and Bc

nC1 D An n Cin are disjoint; as are Bc
n and Ac

nC1. Also,
Ac
nC2 D .BnC1 n CinC1

/ D .An n Cin/
c
n CinC1

D .Ac
n [ Cin/ n CinC1

� Ac
n

since CinC1
� Cin�1

� An. Similarly, Bc
nC2 � B

c
n. It follows that

S
n evenA

c
n,

S
n odd B

c
n are disjoint Borel

sets such that
S
n odd B

c
n meets �almost every E0class and

S
n evenA

c
n meets �almost every E1class. a

a

Section 9. Odds and Sods

[class missed, notes transcribed from lecturer’s notes]

Our next target is the following consequence of MC.

9 • 1. Theorem
(MC) There exist uncountably many weakly countable universal Borel equivalence relations up to Borel reduction.

We first introduce yet another strong ergodicity notion.

9 • 2. Definition
Suppose that E and F are countable Borel equivalence relations on the standard Borel spaces X and Y , and that
� is an Einvariant, Borel probability measure on X .

E is F �ergodic iff for every Borel homomorphism f W X ! Y from E to F , there exists a Borel subsetZ � X
with �.Z/ D 1 such that f maps Z to a single F class.

Note that if E is F �ergodic and f W X ! Y is a �measurable homomorphism from E to F , then there exists a
Borel subset Z � X with �.Z/ D 1 such that f maps Z to a single F class.

To see this, let g W X ! Y be a Borel map where g.x/ D f .x/ for �almost every x 2 X . Then
W D ¹x 2 X W g"Œx�E is not contained in a single F classº

is an Einvariant Borel subset of X with �.W / D 0. Hence, after adjusting g onW , we can suppose that g is a Borel
homomorphism from E to F . The result follows.

In Section 6, we proved the following theorem.
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9 • 3. Theorem

There exists a Borel family � D ¹G˛ W ˛ 2 2
Nº of finitely generated groups, each with underlying set N, such that

the following conditions hold.
(a) G˛ has a normal subgroup N˛ Š SL3.Z/.
(b) G˛ has no nontrivial, finite, normal subgroups.
(c) If ˛ ¤ ˇ, then Gˇ does not embed into G˛ .

For each ˛ 2 2N , consider the shift action G˛ Õ 2G˛ D 2N . Then the uniform product probability measure � on 2N

is G˛invariant and
X˛ D ¹x 2 2

N
W g � x ¤ x for all 1 ¤ g 2 G˛º

satisfies �.X˛/ D 1. Let E˛ be the orbit equivalence relation ofG˛ Õ X˛ . Applying Popa Superrigidity (6A • 3), we
obtain the following theorem.

9 • 4. Theorem
If ˛ ¤ ˇ, then Eˇ is E˛�ergodic.

In particular, E˛ is not weakly universal. On the other hand,�T �E˛ is clearly weakly universal.

9 • 5. Theorem
(MC) If ˛ ¤ ˇ, then .�T �Eˇ / 66B .�T �E˛/.

We will need to work in a forcing extension VP � MAC:CH. So we first need to establish some absoluteness results.
Recall the definition of MC from Martin’s Conjecture (7 • 5). We want to understand the complexity of this statement.
For this, we need a parametrization of the Borel relations R � 2N � 2N .

9 • 6. Theorem (Classical Theorem)

There exist subsetsD � 2N and P; S � .2N/3 such that:
1. D is…1

1, P is…1
1, and S is †11;

2. If d 2 D, Pd D Sd , where
Pd D ¹hx; yi W hd; x; yi 2 P º

Sd D ¹hx; yi W hd; x; yi 2 Sº.
For each d 2 D, letDd D Pd D Sd .

3. ¹Dd W d 2 Dº D ¹R � 2N � 2N W R is Borelº.

Now consider F D ¹d 2 D W Dd is a functionº.

9 • 7. Observation
F is…1

1.

Proof .:.
d 2 F iff d 2 D and

8x 8y 8z .ŒS.d; x; y/ ^ S.d; x; z/�! y D z/ a

As a matter of notation, for each d 2 F , let Fd be the corresponding Borel map.

It is now easily seen that MC is a…1
3 statement. We need to find a less complex formulation.

9 • 8. Definition

(MC0) If f W 2N ! 2N is a Borel homomorphism from�T to�T, then either:
(a) for all x 2 2N , there exists x 6T y such that f .y/ <T y; or
(b) for all x 2 2N , there exists x 6T y such that y 6T f .y/.

Note that MC0 is a…1
2 statement. Of course, we should want MC to be equivalent to this.
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9 • 9. Theorem
MC$ MC0.

Proof .:.
Assume MC and let f W 2N ! 2N be a Borel homomorphism from �T to �T. Suppose there exists a cone
C � 2N such that f maps C to a single class Œr��T . Then for each x 2 2Z, there exists y 2 C such that x 6T y

and f .y/ �T r <T y.

Similarly, if there exists a cone C � 2N such that z 6T f .z/ for all z 2 C , then for all x 2 2N , there exists
x 6T y such that y 6T f .y/. Hence MC0 holds.

Conversely, assume MC0 and let f W 2N ! 2N be a Borel homomorphism from �T to �T. If (a) holds from
Definition 9 • 8, then

A D ¹y 2 2N
W f .y/ <T yº

is a 6Tcofinal�Tinvariant Borel subset of 2N . Hence, by Martin’s Theorem (7 • 2), there exists a cone C � A;
and by Slaman–Steel (7 • 6), there exists a coneD � C such that f mapsD into a single�Tclass. Similarly, if
(b) holds, then there exists a cone C � 2N such that y 6T f .y/ for all y 2 C . a

We also have two more absoluteness results, both immediate consequences of Shoenfield’s absoluteness theorem.

9 • 10. Theorem

If V � MC and P is any notion of forcing, then VP � MC.

9 • 11. Theorem
Suppose that E, F are Borel equivalence relations on the standard Borel spaces X , Y and that f W X ! Y is a
Borel reduction from E to F . Therefore, if P is any notion of forcing then f P W XP ! Y P is a Borel reduction
from EP to F P .

[end of class missed]

Let’s recall what we’ve done and what we’re working towards.

9 • 12. Theorem
(MC) There exist uncountably many weakly countable universal Borel equivalence relations up to Borel reduction.

The idea is to have a whole bunch of countable Borel equivalence relations E˛ , ˛ < 2ℵ0 such that they are “mutually
ergodic”, so that are really incompatible. They are not weakly universal, however.

The following are upwards absolute:
• MC
• E 6B F for Borel equivalence relations E and F

The thing we’re trying to prove is the following.

9 • 13. Theorem
(MC) If ˛ ¤ ˇ, then .�T �Eˇ / 66B .�T �E˛/.

We will use the following consequence of MAC:CH.

9 • 14. Theorem
If � is a Borel probability measure on a standard Borel space X and Z � X is †12, then Z is �measurable.

Proof .:.
Since Z is †12, there exist Borel subsets A˛ , ˛ < !1 such that Z D

S
˛<!1

A˛ . We want to show that Z is
�measurable.
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Let B � Z be a Borel subset such that Z n B has inner measure 0 (meaning there’s no Borel subset of positive
measure). Then for each ˛ < !1, �.A˛ n B/ D 0. By MA C :CH, the union

S
˛<!1

A˛ n B D Z n B has
�measure 0. Thus Z D B [ .Z n B/ is �measurable. a

Proof of Theorem 9 • 13 .:.
Suppose that for some ˛ ¤ ˇ, f W 2N ! Xˇ ! 2N �X˛ is a Borel reduction from�T �Eˇ to�T �E˛ . Then
we can suppose thatMAC:CH holds. By upward absoluteness, MC still holds, and f is still a Borel reduction.

Let �; � be the Borel maps such that
f .r; x/ D h�.r; x/; �.r; x/i.

For each x 2 Xˇ , let �x W 2N ! X˛ be the Borel map defined by �x.r/ D �.r; x/. Then �x is a Borel
homomorphism from�T to E˛ . Since E˛ isn’t weakly universal, byMC, there exists a cone Cx � 2N such that
�x maps Cx to a single E˛class; say, dx .

Suppose that y Eˇ x and r 2 Cx . Then since hr; yi .�T �Eˇ / hr; xi,
�y.r/ D �.r; y/ E˛ �.x; y/ D �x.r/,

and so �y.r/ 2 dx . Hence if y Eˇ x, then dy D dx .

Consider the relation R � Xˇ �X˛ defined by
R.x; z/ iff 9s 8r .s 6T r ! �.r; x/ E˛ z/.

Intuitively, this translates z 2 dx . Then R is†12. By Kondô’s theorem, there exists a†12uniformization function
h W Xˇ ! X˛ for R. Thus h.x/ 2 dx for all x 2 Xˇ . If U 2 X˛ is open,

h�1"U D ¹x 2 Xˇ W 9y .y 2 U ^ h.x/ D y/º
and so h�1"U is †12. By MA C :CH, it follows that h�1"U is �measurable. Thus h W Xˇ ! X˛ is a �
measurable homomorphism from Eˇ to E˛ . Since Eˇ is E˛�ergodic, there exists a Borel Z � Xˇ with
�.Z/ D 1 such that h maps Z to a single E˛class; say, c: for every x 2 Z, h.x/ D dx D c.

For each x 2 Z, let �x W 2N ! 2N be the Borel map defined by �x.r/ D �.r; x/. Then �r is a Borel
homomorphism from �T to �T. If r; s 2 Cx , then �.r; x/; �.s; x/ 2 c; and hence r �T s iff �x.r/ �T �x.s/.
Thus �x is a enduces a Borel reduction from�T�Cx to�T. Hence byMC, there exists a coneDx � Œ�x"Cx ��T .

In particular, choosing x; y 2 Z with Œx�Eˇ
¤ Œy�Eˇ

, there exist r 2 Cx and s 2 Cy such that �x.r/ �T �y.s/.
But then f .r; x/ .�T �E˛/ f .s; y/, a contradiction. a

Now we have a concept by Simon, with a name by Kechris.

9 • 15. Definition

A countable groupG is (weakly) action universal iff there exists a standard BorelGspace such thatEXG is (weakly)
universal.

For notation, if G is countable and X is a standard Borel space,
• E.G;X/ is the orbit equivalence relation of G Õ XG .
• F.G; x/ is the free part of E.G;X/.

We have the following easy theorems.

9 • 16. Theorem
If the countable group G has a nonabelian free subgroup, then G is action universal.

Proof .:.
Since F2 embeds in G, it follows that E1 D E.F2; 2/ 6B E.G; 2/. a
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9 • 17. Theorem
If G is a countable, amenable group, then G isn’t action universal.

The proof of Theorem 9 • 17 is delayed. First, we should define what “amenable” means.

9 • 18. Definition
countable group G is amenable iff there exists a finitely additive probability measure � W P .G/! Œ0; 1� such that
for all A � G and g 2 G, �.Ag/ D �.A/.

Alternatively, under choice, G is amenable iff for every finite S � G and " > 0, there is a nonempty finite A � G

such that for all s 2 S , jA 4 Asj=jAj < ". This shows that amenability is absolute.

The two theorems above suggest the possibility of a “dynamical” version of the von Neumann conjecture: is it true that
if G is a countable group then the following are equivalent?

i. G is action universal.
ii. G contains a nonabelian free subgroup.

If we replace (i) by “amenable”, this is von Neumann’s conjecture, and is false. Thomas’ conjecture is that the answer
is no. Marks’ conjecture is that the answer is yes.

We begin working towards a proof of Theorem 9 • 17. First, the following theorem due to Day.

9 • 19. Theorem
If G is a countable group, then the following are equivalent:

1. G is amenable.
2. There exists a sequence of functions fn W G ! R�0 such that fn 2 `1.G/, kfnk1 D 1 and such that for all
g 2 G, limn!1 kfn � f

g
n k1 D 0 where f gn .h/ D fn.hg/.

Remark: each fn can be regarded as a probability measure on G.

Proof of Theorem 9 • 19 .:.
The proof of (ii) from (i) involves functional analysis, and will be skipped. For (i) from (ii), for each n 2 !,
define �n W P .G/! Œ0; 1� by �n.A/ D

P
a2A fn.a/.

Let U be a nonprincipal ultrafilter on !. Then �.A/ D limU �n.A/ satisfies our requirements.

Here, for hxn W n 2 !i a bounded sequence, limU xn is the unique ` 2 R such that for each " > 0, ¹n 2 ! W
jrn � `j < "º 2 U . It’s not difficult to show such an ` exists. a

9 • 20. Definition
et E be a countable Borel equivalence relation on X . Then E is 1amenable iff there exist Borel fn W E ! R�0

such that, letting f xn .y/ D fn.x; y/,
1. f xn 2 `1.Œx�E / with kf xn k1 D 1.
2. If x E y, then limn!1 kf

x
n � f

y
n k1 D 0.

9 • 21. Proposition

If G is a countable amenable group and X is a standard Borel Gspace, then EXG is 1amenable.

Proof .:.
Let hfn W n 2 !i witness that G is amenable as in Theorem 9 • 19. For each n, define gn W EXG ! R�0 by

gn.x; z/ D
X
g �xDz

fn.g/.

Clearly, if x 2 X , then gxn 2 `1.Œx�EX
G
/ and kgxnk1 D 1. Suppose that x EXG y. Then there exists an h 2 G such
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that hx D y. For each z 2 Œx�EX
G
, gxn.z/ D

P
g �xDz fn.g/ and

gyn .z/ D
X

gh�xDz

fn.g/ D
X

gh�xDz

f h
�1

n .gh/ D
X
g �xDz

f h
�1

n .g/.

Since kfn � f h
�1

n k1 tends to 0, it follows that kgxn � g
y
nk1 also tends to 0. a

In particular, hyperfinite Borel equivalence relations are 1amenable (because they can be realized by a Z action, and
Z is amenable). It is not known whether the converse of this statement holds: it’s conceivable that hyperfiniteness and
1amenability are the same.

The converse of Proposition 9 • 21 doesn’t hold. And there is an interesting counterexample. Consider the action of
GL2.Z/ (2 � 2matrices with determinant˙1) on R [ ¹1º given by�

a b

c d

�
r D

ar C b

cr C d
.

This action is hyperfinite.

9 • 22. Proposition

Suppose G is a countable group and X is a standard Borel space with invariant probability measure �. If G Õ X

is �almost everywhere free, and EXG is 1amenable, then G is amenable.

9 • 23. Corollary

E1 isn’t 1amenable.

Proof .:.
F2 Õ h2F2 ; �i is �almost everywhere free and F2 isn’t amenable. a

Proof of Proposition 9 • 22 .:.
Let h'n W n 2 !i witness that EXG is 1amenable. Define

fn.g/ D

Z
'xn .g � x/ d�.x/.

Then clearly fn � 0. AlsoX
g2G

fn.g/ D
X
g2G

Z
'xn .g � x/ d�.x/ D

Z X
g2G

'xn .g � x/ d�.x/ D
Z X
y2Œx�

'xn .y/ d�.x/,

since the action is �almost everywhere free. Note that by definition, this is just 1.

Finally, if h 2 G, then by definition,
kfn � f

h
n k1 D

X
g2G

jfn.g/ � fn.gh/j

D
X
g2G

ˇ̌̌̌Z
'xn .g � x/ d�.x/ �

Z
'xn .gh � x/ d�.x/

ˇ̌̌̌
D

X
g2G

ˇ̌̌̌Z
'xn .g � x/ d�.x/ �

Z
'h

�1x
n .g � x/ d�.x/

ˇ̌̌̌
�

X
g2G

Z ˇ̌̌
'xn .g � x/ � '

h�1x.g � x/
ˇ̌̌

d�.x/

�

Z X
g2G

ˇ̌̌
'xn .g � x/ � '

h�1x.g � x/
ˇ̌̌

d�.x/ D
Z 'xn � 'h�1x

n


1

d�.x/,

which goes to 0 as n goes to1.
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Thus to prove Theorem 9 • 17, it is enough to prove another proposition. Note that it suffices to prove (i), but doing so
we need to prove (ii) and (iii).

9 • 24. Proposition

Let E, F be countable Borel equivalence relations on X , Y .
(i) If E is 1amenable and F 6B E, then F is 1amenable.
(ii) If E is 1amenable and A � X is Borel, then E�A is 1amenable.
(iii) If A � X is a complete Borel Esection and E�A is 1amenable, then E is 1amenable.

Proof .:.
Assuming (ii) and (iii), we can prove (i) as follows. Let f W Y ! X be a Borel reduction from F to E. Then
A D f "Y is a Borel subset of X and there exists a Borel map g W A! Y such that f .g.a// D a for all a 2 A.
Also, B D g"A is a Borel complete F section. Note that g�A is a Borel isomorphism between E�A and F�B .
Also, by (ii), E�A is 1amenable and hence so is F�B . Since B is a Borel complete F section, (iii) implies that
F is 1amenable.
(ii) Let hfn W n 2 !i witness the 1amenability of E. If A is Einvariant, then hfn�E \ A2i witnesses the

1amenability of E�A. Hence we can assume that A is a Borel complete Esection. Let ' W X ! A

be a Borel map such that '.x/ E x for all x 2 X . For x; y 2 A with x E y, define gxn.y/ to be
†z2'�1.y/f

x
n .z/. Then hgxn W n 2 !i witnesses the 1amenability of E�A.

(iii) Let ' W X ! A be a Borel map such that '.x/ E x for all x 2 X . For x; y 2 X with x E y, define

gxn.y/ D

´
f
'.x/
n .y/ if y 2 A
0 otherwise.

Then hgn W n 2 !i witnesses the 1amenability of E. a

9 • 25. Definition
If G is a countable group, then Sg.G/ is the space of subgroups H 6 G (a compact subset of 2G); and �G is the
conjugacy relation on Sg.G/:

K �G L iff 9g 2 G .gKg�1
D L/.

9 • 26. Theorem
(MC) If G is a countable group, then the following are equivalent.

(i) �G is weakly universal.
(ii) G is weakly action universal.

Proof .:.
That (i) implies (ii) is trivial. So suppose (ii) holds. Let X be a standard Borel Gspace such that EXG is weakly
universal. Suppose �G isn’t weakly universal. Sonsider the Borel map ' W X ! Sg.G/ given by '.x/ D Gx
(the stabilizer). Then ' is a Borel homomorphism from EXG to�G .

Next, let  W 2N ! X be a weak Borel reduction from �T to EXG ; and let � D ' ı  . Then � is a Borel
homomorphism from �T to �G . By MC, there exists a cone C � 2N such that � maps C to a single �Gclass.
By adjusting  if necessary, we can suppose that there exists a fixedK 6 G such that G .r/ D K for all r 2 C .
For later use, note that�T�C is weakly universal.

Let X0 D ¹x 2 X W Gx D Kº. Then we have just seen that �T�C 6w
B EXG �X0 and so EXG �X0 is weakly

universal. However, we will next show that EXG �X0 is essentially free, a contradiction.

Suppose x; y 2 X0 and x EXG y. Then there exists a g 2 G such that g � x D y. Since gKg�1 D gGxg
�1 D

Gy D K, it follows that g 2 NG.K/ (the normalizer). If h 2 G also satisfies hx D y, then hK D gK. Hence
EXG �X0 is the orbit equivalence relation of the associated free Borel action of � D NG.K/=K. It follows that
EXG �X0 is essentially free, contradicting that it is weakly universal. a
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But what can we prove from ZFC? Without MC, we can just prove the following much weaker version.

9 • 27. Theorem
If�G is essentially free, then G is not weakly action universal.

To give an idea of how little is known, consider the following question: is the converse true? Thomas’ conjecture (and
belief) is “no”. Although he changes the conjecture in the last minute of class to be “yes”.

We will make use of the following theorem of Hjorth et al.

9 • 28. Theorem
If the countable group G has a nonabelian, free subgroup, then�G is countable universal.

Proof of Theorem 9 • 27 .:.
Suppose G is weakly action universal but that�G is essentially free. Then there exists a countableH and a free
standard BorelH spaceZ such that�G6B E

Z
H . Let ' W Sg.G/! Z be a Borel reduction from�G to EZH . Let

L be a finitely generated group with no nontrivial finite normal subgroups such that L doesn’t embed intoH and
let � D SL3.Z/ � L.

Let X be a standard Borel Gspace such that EXG is weakly universal and let  W 2� ! X be a weak Borel
reduction from E.�; 2/ to EXG . Let � W X ! Sg.G/ be the Borel homomorphism defined by �.x/ D Gx (the
stabilizer). So we have

2�
 
�! X

�
�! Sg.G/

'
�! Z.

Let � W 2� ! Z be defined by � D ' ı � ı  . Then � is a Borel homomorphism from E.�; 2/ to EZH . By Popa
Superrigidity (6A • 3), since L doesn’t embed into H , there exists a Borel subset Y � 2� with �.Y / D 1 such
that � maps Y to a single EZH class.

Since ' is a Borel reduction, � ı maps Y to a single�Gclass. After adjusting  if necessary, we can suppose
that there exists a single subgroup K 6 G such that (the stabilizer) G .y/ D K for all y 2 Y . Let X0 D
¹x 2 X W Gx D Kº. Then EXG �X0 can be realized by the corresponding free action of � D NG.K/=K. Since
 �Y is �nontrivial, by Popa Superrigidity (6A • 3), there exists an embedding � ,! �. Since SL3.Z/ 6 � ,
it follows that � contains a nonabelian, free subgroup. It follows that NG.K/ has a nonabelian, free subgroup.
ByTheorem 9 • 28, sinceG has a nonabelian, free subgroup,�G is countable universal and hence not essentially
free, a contradiction. a

Most questions concerning�G are open. For example, note the following observation to motivate the first question.

9 • 29. Observation
If G,H are countable and there exists a surjective homomorphism � W G ! H , then�H 6B �G .

Proof .:.
Let f W Sg.H/! Sg.G/ be defined by f .K/ D ��1"K. Then f is a Borel reduction from�H to�G . a

9 • 30. Open Problem

SupposeH 6 G. Does it follow that�H 6B �G?

9 • 31. Definition
subgroupH 6 G is malnormal if gHg�1 \H D 1 for all g 2 G nH .

For example, let F2 D ha; bi < F3 D ha; b; ci. Then F2 is malnormal in F3.

Note that ifH is a malnormal subgroup of G, then clearly�H 6B �G . Also, ifH 6 G is a counterexample to Open
Problem 9 • 30, then G has no nonabelian free subgroups.
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9 • 32. Open Problem

LetE be any countable Borel equivalence relation. Does there necessarily exist a countableG such thatE �B �G?

Really, the question is what kinds of relations can be realized as�G for some G? For now, we at least know there are
uncountably many.

9 • 33. Theorem
There exists an uncountable family ¹G˛ W ˛ < 2ℵ0º of finitely generated, nonamenable groups such that if ˛ ¤ ˇ,
then �G˛

and �Gˇ
are incompatible with respect to 6B. In particular, none are universal. And furthermore, each

�G˛
is essentially free and hence not weakly universal.

To prove this, we require a bit of background.

9 • 34. Definition
IfH is any group, then the (restricted) wreath productC2 wrH is defined as follows. For each h 2 H , letCh D hchi
be cyclic of order 2. Then the base subgroup is B D

L
h2H Ch, and C2 wrH D B ÌH where gchg�1 D cgh for

g; h 2 H .

9 • 35. Lemma
IfH is a countable group and G D C2 wrH , then E.H; 2/ 6B �G .

Proof .:.
For each A � H , let

KA D
M
a2A

Ca 6 B 6 G.

Let g 2 G be any element. Then there exist h 2 H and b 2 B such that g D hb. Since B is abelian,
gKAg

�1
D hbKAb

�1h�1
D hKAh

�1
D KhA.

Thus A 7! KA is a Borel reduction from E.H;Z/ to�G . a

9 • 36. Corollary

IfH is an infinite sum of cyclic groups of order 2 and G D C2 wrH , then�G is nonsmooth and hyperfinite.

Each of our gropus will have the form G˛ D C2 wrH˛ whereH˛ is a finitely gnerated, simple, quasifinite group. In
fact, every simple, quasifinite group is necessarily finitely generated. So the “finitely generated” can be removed, as
it’s redundant.

To see this, suppose that S is a counterexample. Then S is locally finite. Every infinite, locally finite group has an
infinite abelian subgroup (a nontrivial result). Since every proper subgroup is finite, it follows that S must be abelian.
But the only abelian, quasifinite groups are Z.p1/ (which isn’t simple) and Q (which isn’t simple).

9 • 37. Lemma
SupposeH is a simple, quasifinite group and X is a standard BorelH space. Let Y D ¹x 2 X W Hx ¤ 1º be the
nonfree part of EXH . Therefore EXH�Y is smooth.

Proof .:.
First let Z D ¹x 2 X W Hx D H º. Then EXH�Z is a clearly smooth. So we can suppose that Z D ;. Fix an
element F� of each of the countably many conjugacy classes � of nontrivial finite subgroups of H . If x 2 Y ,
then Hx is a nontrivial finite subgroup of H . Let �x be the corresponding cojugacy class containing Hx ; and
define

�.x/ D ¹y 2 H � x W Hy D F�x
º.

We claim that �.x/ is a nonempty, finite subset of Y . To see that �.x/ is nonempty, choose g 2 H such that
gHxg

�1 D F�x
and let y D g � x. ThenHy D gHxg�1 D F�x

and so y 2 �.x/.

63



MATH 569 CLASS NOTES §9

Next suppose that y; z 2 �.x/ and let h � y D z. Then
hF�x

h�1
D hHyh

�1
D Hz D F�x

.
Thus h 2 NH .F�x

/. Since H is simple, NH .F�x
/ is a proper subgroup and hence is finite. Thus �.x/ is finite.

Clearly ifH � x D H � y, then �.x/ D �.y/. Thus � W Y ! Y <! witnesses that EXH�Y is smooth. a

Recall that simple, quasifinite groups are necessarily finitely generated.

9 • 38. Lemma
Let H be a simple quasifinite group and let G D C2 wrH . Then there exists a free standard Borel space Z such
that EZH 6B�G .

Proof .:.
Let � W G ! H be the canonical surjection. Then Sg.G/ D X0 tX1 tX1 tX2, where

X0 D ¹K 2 Sg.G/ W �"K D H º
X1 D ¹K 2 Sg.G/ W �"K is a finite nontrivial subgroup ofH º
X2 D ¹K 2 Sg.G/ W �"K D ¹1H ºº

Let’s see how complicated each of these are. Let B be the base group for G as usual: B D
L
h2H Ch.

Claim 1
�G �X0 is smooth.

Proof .:.
SupposeK 2 X0 and g D hb 2 G be any element where h 2 H and b 2 B . Since �"K D H , there exists
a c 2 B such that k D hc 2 K. It follows that, as B is abelian,

g.K \ B/g�1
D hg.K \ B/g�1h�1

D h.K \ B/h�1
D k.K \ B/k�1,

as B is normal and k normalizes K, this is just K \ B . Thus K \ B C G. Also since K=.K \ B/ Š H ,
it follows that K is finitely generated over K \ B and hence there are only countably many K 0 2 X0 such
that K 0 \ B D K \ B .

Let � be the equivalence relation on X0 defined by K � K 0 iff K \ B D K 0 \ B . Thus � is a smooth
(witnessed by sendingK 7! K \B) countable Borel equivalence relation. Since�G �X0 � �, it follows
that�G �X0 is smooth. a

Claim 2
�G �X1 is smooth.

Proof .:.
Let F be a set of representatives of the counjugacy classes of countably many nontrivial finite subgroups
ofH . For each F 2 F , let XF D ¹K 2 Sg.G/ W �"K D F º. Then �G�X1 6B

F
F 2F �G �XF ; and so

it is enough to show that each�G �XF is smooth.

Fix some F 2 F and let K 2 XF . Since K=.K \B/ Š F , there are only countably many K 0 2 XF such
that K 0 \ B D K \ B . Hence if � is the equivalence relation on XF defined by

K � K 0 iff 9h 2 NH .F / .h.K \ B/h�1
D K 0

\ B/,
then � is a countable Borel equivalence relation.

SinceH is simple, NH .F / is a proper subgroup and hence is finite and so� is smooth. Hence it is enough
to show that�G �XF ��.

SupposeK;K 0 2 XF and gKg�1 D K 0. Let g D hb, where h 2 H and b 2 B . Then clearly h 2 NH .F /.
Also, K 0 \ B D g.K \ B/g�1 D h.K \ B/h�1 and so K � K 0. a
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By Claim 1 and Claim 2, �G is Borel bireducible with �G �X2. Suppose K 2 X2 and g D hb 2 G, where
h 2 H and b 2 B . Then gKg�1 D hKh�1. Thus �G �X2 can be realized by the correspondingH action. Let
Z � X2 be the free part of this action. By the previous lemma,�G �X2 � EZH as a simple, quasifinite group.a

We will make use of the following theorem of Ol’shanskii (and folklore).

9 • 39. Theorem
If � is a noncyclic, torsionfree, hyperbolic group, then � has a family ¹H˛ D �=N˛ W ˛ < 2!º of uncountably
many nonisomorphic simple, quasifinite quotients.

To apply Popa Superrigidity (6A • 3), we want a Kazhdan group. So to useTheorem 9 • 39, we need to be careful about
the group we’re taking quotients of. Luckily there is a Kazhdan group with these properties. Since the quotients are
Kazhdan, we will be able to use Popa Superrigidity (6A • 3).

9 • 40. Theorem
There exists a noncyclic, torsionfree hyperbolic Kazhdan group.

Proof of Theorem 9 • 33 .:.
Let � be a noncyclic, torsionfree, hyperbolic Kazhdan group as per Theorem 9 • 40; and let ¹H˛ D �=N˛ W ˛ <
2!º be a family of nonisomorphic, simple, quasifinite quotients. Then eachH˛ is also a Kazhdan group.

Let G˛ D C2 wrH˛ . Suppose that there exist ˛ ¤ ˇ such that �G˛
6B �Gˇ

. Since E.H˛; 2/ 6B �G˛
,

we have that E.H˛; 2/ 6B �Gˇ
. Let Z be a free standard Borel Hˇ space such that Gˇ 6B EZHˇ

. Then
E.H˛; 2/ 6B E

Z
H . So by Popa Superrigidity (6A • 3), there exists a virtual embedding � W H˛ ! Hˇ . SinceH˛

is simple, � is an embedding. SinceH˛ 6Š Hˇ , �.H˛/ is an infinite, proper subgroup ofHˇ , which contradicts
thatHˇ is quasifinite. a

Now we discuss the conjecture of Marks. Really we will look at a slight weakening of his actual conjecture (self
described as “ridiculously optimistic”).

9 • 41. Definition
Let G be a countable group and let X be a standard Borel Gspace.
ThenEXG is uniformly universal iff wheneverH is a countable group and Y is a standard BorelH space, then there
exists a Borel reduction f W Y ! X from EYH to EXH such that there exists a map (just a function) u W H ! G

satisfying
f .hy/ D u.h/f .y/ (*)

for all y 2 Y and h 2 H .

In this case, we can suppose that
• u.1/ D 1;
• if h ¤ h�1, then u.h�1/ D u.h/�1 (as we will check).

To see this, suppose h ¤ h�1. By assumption, for all y 2 Y ,
f .hy/ D u.h/f .y/ and so f .y/ D u.h/�1f .hy/.

Let z 2 Y be arbitrary and let y D h�1z. Then f .h�1z/ D u.h/�1f .z/.

9 • 42. Open Problem (Marks)

If E D EXG is countable universal, then EXG is uniformly universal (for each G realizing E D EXG ).

As a convention, from now on, .2!/G D ¹f W f W G ! 2!º.

9 • 43. Example

E.F! ; 2!/ is uniformly universal. (Here F! is the free group on infinitely many generators.)
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Proof .:.
Let H be a countable group and Y be a standard Borel H space. Recall that there exists an injection ' W Y !
.2!/H such that for all y 2 Y and h 2 H , '.hy/ D h'.y/. Let � W F! ! H be a surjective homomorphism
and define  W .2!/H ! .2!/F! by

 .x/.g/ D x.�.g// x 2 .2!/H ; g 2 F! .
Then  is a Borel reduction from E.H; 2!/ to E.F! ; 2!/.

Let u W H ! F! satisfy �.u.h/�1/ D h�1 for h 2 H . If x 2 .2!/H , h 2 H , and g 2 F! , then
 .hx/.g/ D .hx/.�.g// D x.h�1�.g// D x.�.u.h/�1g// D  .x/.u.h/�1g/ D u.h/ .x/.g/.

Thus  .hx/ D u.h/ .x/, as desired. a

We have the following theorem due to Marks.

9 • 44. Theorem

IfG is a countable group, then there exists a standard BorelGspace such that EXG is uniformly universal iffG has
a nonabelian, free subgroup.

Proof .:.
( ) Suppose G has a nonabelian, free subgroup. Then there exists an embedding � W F! ! G. Fix some

p0 2 2
! , and define f W .2!/F! ! .2!/G by

f .x/.g/ D

´
x.��1.g// if g 2 im�

p0 otherwise.
Then f is a Borel reduction fromE.F! ; 2!/ toE.G; 2!/; and it is easily checked that f .hx/ D �.h/f .x/
for all h 2 F! and x 2 .2!/F! . Taking compositions with the uniformly universal action from Example
9 • 43 yields that E.G; 2!/ is uniformly universal.

(!) Suppose there exists a standard Borel Gspace X such that EXG is uniformly universal. Let � D
¨
i2! �i

where each �i D F2. Then there exists a Borel reduction f W .2!/� ! X from F.�; 2!/ toEXG and a map
u W  ! G such that for all y 2 .2!/� and  2 � ,

f .y/ D u./f .y/.
Applying Theorem 2 • 6 to

R D
®
hf .y/; yi W y 2 .2!/�

¯
,

there exists a partition .2!/� D
F
i2! Ai (seen as the free part) into Borel pieces Ai such that f �Ai is

injective. By an extension of Marks’ Main Theorem (8 • 17), there exists an i 2 ! and a �i equivariant,
injective, Borel map g going from .2!/�i D .2!/F2 to Ai . Let ' D f ı g. Then ' W .2!/F2 ! X is an
injection; and if x 2 .2!/F2 and  2 F2, then

'.x/ D f .g.x// D u./'.x/.
Let F2 D h˛; ˇi. Then, after adjusting u if necessary, we can suppose u.˛�1/ D u.˛/�1 and u.ˇ�1/ D

u.ˇ/�1. Let a D u.˛/ and b D u.ˇ/. If x 2 .2!/F2 and w.˛; ˇ/ is a nontrivial reduced word in ˛; ˇ,
then '.w.˛; ˇ/x/ D w.a; b/'.x/. Since w.˛; ˇ/x ¤ x and ' is an injection, it follows that w.a; b/ ¤ 1.
Then ha; bi is a free subgroup of G. a

Finally, we prove the following theorem.

9 • 45. Theorem
There exists a periodic group G of bounded exponent such that�G isn’t essentially free.

To prove this, we need some preparation in the form of two theorems of Ol’shanskii.

9 • 46. Theorem
If H is a noncyclic, torsionfree, hyperbolic group, then there exists an integer nH such that H=Hn is infinite for
all odd n � nH .
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9 • 47. Theorem
For every sufficiently large, odd n, there exists a family ¹G˛ W ˛ < 2!º of nonisomorphic, 2generator, simple
groups of exponent n.

So we have our big guns, and can move on to proving Theorem 9 • 45

Proof of Theorem 9 • 45 .:.
LetH be a noncyclic, torsionfree, hyperbolic, Kazhdan group and let n be a sufficiently large, odd integer. Then
K D H=Hn is an infinite Kazhdan group of exponent n. Also, let ¹G˛ W ˛ < 2!º be a family of nonisomorphic,
2generator, simple groups of exponent n. Let K be a d generator group, and let B be the free Burnside group
on d C 2 generators of exponent n. Then for all ˛ < 2! , K � G˛ is a homomorphic image of B and so
E.K �G˛; 2/ 6B E.B; 2/.

Claim 1
E.B; 2/ isn’t essentially free.

Proof .:.
Suppose there exists a countable H and a free standard Borel H space such that E.B; 2/ 6B EYH . For
each ˛ < 2! , we have that E.K � G˛; 2/ 6B E.B; 2/ 6B E

Y
H . Then Popa Superrigidity (6A • 3) implies

that there exists an embedding �˛ W G˛ ! H . Since we have uncountably many such �˛ , there exist
uncountably many ˛ ¤ ˇ such that �˛"G˛ D �ˇ "Gˇ and hence G˛ Š Gˇ , a contradiction. a

Let G D C2 wrB . Then E.G; 2/ 6B �G and so �G isn’t essentially free. a
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